Review

Abstract

The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells.

Authors

Peggy Myung, Mayumi Ito

×

Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with over 250,000 new cases annually in the US and is second in incidence only to basal cell carcinoma. cSCC typically manifests as a spectrum of progressively advanced malignancies, ranging from a precursor actinic keratosis (AK) to squamous cell carcinoma (SCC) in situ (SCCIS), invasive cSCC, and finally metastatic SCC. In this Review we discuss clinical and molecular parameters used to define this range of cutaneous neoplasia and integrate these with the multiple experimental approaches used to study this disease. Insights gained from modeling cSCCs have suggested innovative therapeutic targets for treating these lesions.

Authors

Vladimir Ratushny, Michael D. Gober, Ryan Hick, Todd W. Ridky, John T. Seykora

×

Abstract

Classic atopic dermatitis is complicated by asthma, allergic rhinitis, and food allergies, cumulatively referred to as atopic diseases. Recent discoveries of mutations in the filaggrin gene as predisposing factors for atopic diseases have refocused investigators’ attention on epidermal barrier dysfunction as a causative mechanism. The skin’s barrier function has three elements: the stratum corneum (air-liquid barrier), tight junctions (liquid-liquid barrier), and the Langerhans cell network (immunological barrier). Clarification of the molecular events underpinning epidermal barrier function and dysfunction should lead to a better understanding of the pathophysiological mechanisms of atopic diseases.

Authors

Akiharu Kubo, Keisuke Nagao, Masayuki Amagai

×

Abstract

Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment.

Authors

Maria Kasper, Viljar Jaks, Daniel Hohl, Rune Toftgård

×

Abstract

I recently had the opportunity to visit a very relaxing and beautiful day spa during the middle-of-the-day break from the sessions at a Keystone meeting. I was having a very tranquil and restorative day, when I went in for my final treatment — a facial. The very chipper and cheerful esthetician began examining my skin and applying various creams, when I then heard her say something that nearly ruined my experience: she claimed that the topical treatment she was about to apply would, in her words, “cleanse my liver.”

Authors

Ushma S. Neill

×

Abstract

Dermatologic disease, although seldom life threatening, can be extremely disfiguring and interfere with the quality of life. In addition, as opposed to other organs, just the aging of skin and its adnexal structure the hair follicle can result in cosmetic concerns that affect most of us. The articles in this dermatology Review Series demonstrate recent progress in understanding the cell biology and molecular pathophysiology of the epidermis and hair follicles, which harbor keratinocyte and melanocyte stem cells. They reveal a dynamic relationship between research and clinical care: knowledge of dermatologic disease has facilitated the understanding of the biology of the epidermis and, in turn, progress in basic science has informed our understanding of disease. This type of synergy is a profound strength of clinical research of the type that the JCI is dedicated to publishing.

Authors

John R. Stanley

×

Abstract

The hormone glucagon has long been dismissed as a minor contributor to metabolic disease. Here we propose that glucagon excess, rather than insulin deficiency, is the sine qua non of diabetes. We base this on the following evidence: (a) glucagon increases hepatic glucose and ketone production, catabolic features present in insulin deficiency; (b) hyperglucagonemia is present in every form of poorly controlled diabetes; (c) the glucagon suppressors leptin and somatostatin suppress all catabolic manifestations of diabetes during total insulin deficiency; (d) total β cell destruction in glucagon receptor–null mice does not cause diabetes; and (e) perfusion of normal pancreas with anti-insulin serum causes marked hyperglucagonemia. From this and other evidence, we conclude that glucose-responsive β cells normally regulate juxtaposed α cells and that without intraislet insulin, unregulated α cells hypersecrete glucagon, which directly causes the symptoms of diabetes. This indicates that glucagon suppression or inactivation may provide therapeutic advantages over insulin monotherapy.

Authors

Roger H. Unger, Alan D. Cherrington

×

Abstract

The pancreas is a complex organ comprised of three critical cell lineages: islet (endocrine), acinar, and ductal. This review will focus upon recent insights and advances in the biology of pancreatic ductal cells. In particular, emphasis will be placed upon the regulation of ductal cells by specific transcriptional factors during development as well as the underpinnings of acinar-ductal metaplasia as an important adaptive response during injury and regeneration. We also address the potential contributions of ductal cells to neoplastic transformation, specifically in pancreatic ductal adenocarcinoma.

Authors

Maximilian Reichert, Anil K. Rustgi

×

Abstract

Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2 pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and therapeutic HSV-2 vaccines.

Authors

Christine Johnston, David M. Koelle, Anna Wald

×

Abstract

The discovery that certain high-risk strains of human papillomavirus (HR-HPV) cause nearly 100% of invasive cervical cancer has spurred a revolution in cervical cancer prevention by promoting the development of viral vaccines. Although the efficacy of these vaccines has already been demonstrated, a complete understanding of viral latency and natural immunity is lacking, and solving these mysteries could help guide policies of cervical cancer screening and vaccine use. Here, we examine the epidemiological and biological understanding of the natural history of HPV infection, with an eye toward using these studies to guide the implementation of cervical cancer prevention strategies.

Authors

Patti E. Gravitt

×

No posts were found with this tag.