Supplemental Data for the Manuscript:

Nanomolar affinity anti-glycan antibody generation is controlled by T cells

Zinaida Polonskaya, Shenglou Deng, Anita Sarkar, Lisa Kain, Marta Comellas-Aragones, Craig S. McKay, Katarzyna Kaczanowska, Marie Holt, Ryan McBride, Valle Palomo, Kevin
M. Self, Seth Taylor, Adriana Irimia, Sanjay R. Mehta, Jennifer M. Dan, Matthew Brigger,

Shane Crotty, Stephen P. Schoenberger, James C. Paulson, Ian A. Wilson, Paul B.
Savage, M.G. Finn, Luc Teyton

Supplemental Methods

Reagents. TS3, TS14 and PBS-57 were synthesized as described in the section "Compound synthesis" below. pCDF-1b and pET-11b plasmids with Q β coat protein sequence (pET11b-CP and pCDF1b-CP) were constructed by Dr. S. D. Brown as described (1). Dulbecco's Phosphate Buffered Saline (DPBS) and chemically competent BL21(DE3) cells were purchased from Life Technologies (Carlsbad, CA). Acrylamide solutions and Coomassie Plus reagent were from Thermo Fisher, Waltham, MA. All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO), unless noted otherwise.

Instrumentation. Continuous $10-40 \%$ sucrose gradients were prepared with a Biocomp Gradient Master and visualized with a Piston Gradient Fractionator (BioComp Instruments, Inc., Fredericton, NB, Canada). Size-exclusion and ion exchange chromatography analyses and purifications were performed on an Äkta Explorer (GE Healthcare, Piscataway, NJ). Microfluidic gel electrophoresis was performed on a 2100 Bioanalyzer using Series II Protein 80 chips (Agilent, Santa Clara, CA). All centrifugations were performed on Beckman Coulter centrifuges and rotors (Indianapolis, IN) at $4^{\circ} \mathrm{C}$. MALDI-TOF spectra were collected on a Voyager DE Pro instrument (Applied Biosystems, Carlsbad, CA). Vacuum speed concentration was performed on a Savant SC110 Speedvac (Thermo Fisher, Waltham, MA). SPR measurements were taken on Biacore T200 (GE Healthcare, Piscataway, NJ). Confocal microscopy was carried out on Zeiss LSM 710 (Zeiss AG, Oberkochen, Germany).

Expression and purification of VLPs. BL21(DE3) E. coli cells were transformed with approximately 1 ng of a pET11b-CP or pCDF1b-CP plasmid. Expressions were carried out in 500 ml SOB media with IPTG induction at $37^{\circ} \mathrm{C}$ for $4-6 \mathrm{~h}$. The cells were
then collected by centrifugation in a JLA-16.25 rotor at $10,000 \mathrm{rpm}$ for 10 min , resuspended in 0.1 M potassium phosphate buffer pH 7.0 and sonicated with a probe sonicator (10 min total sonication time, in cycles of 5 s on and 5 s off). The VLPs were precipitated from the resulting supernatant by the ammonium sulfate at $265 \mathrm{~g} / \mathrm{L}$ (50\% saturation) on ice overnight. The precipitate was resuspended in phosphate buffer and extracted with $\mathrm{CHCl}_{3} / \mathrm{nBuOH}(1: 1, \mathrm{v} / \mathrm{v})$. VLPs were purified on $10-40 \%$ sucrose density gradients in an SW28 rotor at 27,000 rpm for 4-5 h. Visible particle bands were collected from each gradient and subsequently pelleted in an ultracentrifuge (50.2Ti rotor, 48,000 rpm, 2 h). The purified protein was dissolved in DPBS and filtered on a $0.2 \mu \mathrm{~m}$ filter. VLP purity and aggregation state were assessed by size exclusion chromatography and gel electrophoresis. Protein concentration was measured using Coomassie Plus reagent.

N-hydroxysuccinimide (NHS) acylation of VLPs. Q β VLPs (5-30 mg, 0.35 - 2.1 $\mu \mathrm{mol}$ in CP) in $1 \times \mathrm{DPBS}$ were mixed with water and 10 x DPBS to give $2.77 \mathrm{mg} / \mathrm{ml}$ Q , 1.11x DPBS. NHS-alkyne linker was dissolved in DMSO at $17.54 \mathrm{mM}(3.51 \mathrm{mg} / \mathrm{ml})$ to make a $10 x$ stock. The DMSO solution was then slowly added to the VLP solution for a final reaction of $2.5 \mathrm{mg} / \mathrm{ml} \mathrm{Q} \beta(175.4 \mu \mathrm{M}$ in CP), 1.754 mM NHS-alkyne (10 eq. per CP) in 10% DMSO in $1 \times$ PBS. The entire mixture was reacted overnight at room temperature $(R T)$. The following morning, the reaction mixtures were purified by either size-exclusion chromatography, or using repeated washes with 100 kDa MWCO filters (EMD Millipore, Billerica, MA).

Copper-catalyzed azide-alkyne cycloaddition reaction. For the synthesis of $Q \beta$ -TS14-40 conjugates, the final reaction conditions were as follows: $0.62 \mathrm{mg} / \mathrm{ml} Q \beta$-alkyne ($43.5 \mu \mathrm{M}$ in CP), $220 \mu \mathrm{M}$ TS14-azide (~ 5 eq. per CP), $220 \mu \mathrm{M} \mathrm{CuSO} 4$ (5 eq. per CP), 1.1
mM THPTA ligand (5 eq. per CuSO_{4}), 5 mM aminoguanidine, 5 mM sodium ascorbate, in 1xPBS. The particles and the glycan were first mixed together in buffer. CuSO_{4} and THPTA were premixed to allow complex formation and added to the substrate mixture, followed by aminoguanidine. Sodium ascorbate was added last to initiate the reaction. The reaction proceeded for 4 hrs at RT and was purified by extensive washing with PBS using 100 kDa MWCO filters (EMD Millipore, Billerica, MA). To produce VLPs with different glycan loadings, the conditions were modified as follows: for Q β-TS14-20: $73 \mu \mathrm{M}$ TS14-azide (1.67 eq. per CP); for Q β-TS14-80: $660 \mu \mathrm{M}$ TS14-azide (15 eq. per CP); for Qß-TS14-200: $1.25 \mathrm{mg} / \mathrm{ml}$ Qß-alkyne ($87.7 \mu \mathrm{M}$ in CP), 2.11 mM TS14-azide (24 eq. per CP), $880 \mu \mathrm{M} \mathrm{CuSO}_{4}$ (5 eq. per CP), 1.1 mM THPTA ligand (5 eq. per CuSO_{4}), 17.5 mM aminoguanidine, 17.5 mM sodium ascorbate, reaction proceeded overnight at RT.

MALDI analysis of $Q \beta$ CP. $10 \mu \mathrm{l}$ of $\mathrm{Q} \beta \mathrm{VLPs}$ at $1 \mathrm{mg} / \mathrm{ml}$ were mixed with $10 \mu \mathrm{l}$ of 1 M dithiothreitol (DTT) and $50 \mu \mathrm{l} 10 \mathrm{M}$ urea and incubated for 30^{\prime} at $37^{\circ} \mathrm{C} .100 \mu \mathrm{l}$ of 0.5 M iodoacetamide for 1 hr at $37^{\circ} \mathrm{C}$ in the dark. An additional $50 \mu \mathrm{~L}$ of 1 M DTT was added to the solution, which was left at RT for 10 min . Samples were dried using a vacuum speed concentrator, redissolved in $50 \mu \mathrm{l}$ of 50% acetonitrile in water, and desalted using Cleanup C18 Pipette Tips (Agilent, Santa Clara, CA) according to the manufacturer's protocol. Samples were spotted using a sinapinic acid matrix.

Synthesis of BSA-TS14. Bovine Serum Albumin (BSA) was conjugated to TS14 bearing a carboxylic acid linker (TS14-COOH) using in situ NHS acylation, where TS14COOH was first converted into an NHS ester. Equal amounts of 1-ethyl-3-(3dimethylaminopropyl)carbodiimide (EDC) and NHS were combined together at RT in 10 mM MES buffer pH 4.5 to activate NHS. TS14-COOH was then added, for final
concentrations of 10 mM TS14-COOH, 20 mM NHS/EDC and 5 mM MES buffer, and NHS-ester of TS14-COOH was allowed to form for 5 minutes at RT. $5 \mathrm{mg} / \mathrm{ml}$ stock solution of BSA in PBS was then added directly to the reaction mixture for final concentrations of $3 \mathrm{mg} / \mathrm{ml}$ BSA, 4 mM TS14-NHS. The reaction was carried out overnight at RT, and BSATS14 was purified by size exclusion chromatography. Derivatization of BSA with TS14 was confirmed by MALDI mass spectrometry.

Synthesis of BSA-TS3 by strain-promoted azide-alkyne cycloaddition. BSA in PBS was mixed with 10x solution of monofluoro-substituted cyclooctyne (MFCO)-NHS (Berry \& Associates, Dexter, MI) in DMSO for final concentrations of $2.5 \mathrm{mg} / \mathrm{ml}$ protein, 1.75 mM MFCO-NHS, and left to incubate overnight at RT. After purification by repeated washes with 30 kDa MWCO filters, BSA-MFCO ($10 \mathrm{mg} / \mathrm{ml}$) was incubated with TS3-azide $(4.25 \mathrm{mM})$ in PBS at RT for 8 hours, then at $4^{\circ} \mathrm{C}$ overnight, and purified with 30 kDa MWCO filters. Conjugation of BSA to TS3 was confirmed by MALDI mass spectrometry.

Human plasma isolation. 5 ml of blood from pediatric and adult donors was diluted $1: 1$ with PBS and overlayed on a layer of Ficoll-Paque (GE Healthcare, Piscataway, NJ). Density gradient centrifugation was carried out at 400 g for 25 minutes, with brakes off. Plasma was collected off the top of the liquid column.

ELISA. All manipulations were performed at room temperature unless stated otherwise, and all washes were performed with a volume of $150 \mu \mathrm{~L}$ per well. 96 -well plates (Corning Inc., Corning, NY) were coated with $0.5 \mu \mathrm{~g} / \mathrm{mL}$ BSA species in DPBS $(100 \mu \mathrm{~L})$, overnight at $4^{\circ} \mathrm{C}$. The following morning, plates were washed $3 x$ with 0.05% Tween 20 in DPBS (PBST) before blocking with $80 \mu \mathrm{l}$ of 2% BSA in PBST (PBST-B) for 2 h . Dilutions of mouse sera (20μ l per well) were prepared in PBST-B, beginning with $1: 10$ to $1: 20$ for
titration experiments, or at 1:40 for set point dilution, unless specified otherwise, and added to blocked wells, for a final volume of $100 \mu \mathrm{l}$. After one hour, plates were washed three times with PBST, and $100 \mu \mathrm{~L}$ of a secondary donkey anti-mouse lgG or lgM horseradish peroxidase conjugated antibody (Jackson Immunoresearch, West Grove, PA) (1:5000 dilution in PBST-B) was added for 1 h . Plates were washed four times with PBST, and detection was accomplished with $100 \mu \mathrm{~L}$ of $0.4 \mathrm{mg} / \mathrm{ml}$ O-phenylenediamine dihydrochloride (OPD). Color was developed for 5-20 minutes at RT before quenching with $50 \mu \mathrm{~L}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Absorbance at 492 nm was recorded with a Sunrise microplate reader (Tecan, Männedorf, Switzerland).
S. pneumoniae propagation and staining. S. pneumoniae serotype 14 (catalog number 6314) and serotype 3 (catalog number 6303) were obtained from ATCC. The bacteria were plated on blood agar plates (BD Biosciences, San Jose, CA) and grown overnight at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ atmosphere. Three milliliters of Brain-Heart Infusion (BHI) broth supplemented with a $1 \times 1 \mathrm{~cm}$ brick of blood agar were inoculated with the individual colonies from the plate. Bacteria were grown to log phase (OD600~0.5) three times to obtain highly encapsulated strain (2), and stored at $4^{\circ} \mathrm{C}$ overnight between passages. Serial dilutions of bacterial cultures taken at different stages of growth were plated on blood agar plates to establish a linear correlation between OD600 and $\log _{10}(\mathrm{CFU} / \mathrm{ml})$. The formula derived for serotype 14 is: $\log _{10}\left(\mathrm{CFU}_{14}\right)=1.4 \times$ OD600 +7.56 . For serotype 3 : $\log _{10}\left(\mathrm{CFU}_{3}\right)=1.53 \times O D 600+7.8$. For heat-inactivation bacterial suspensions were washed with PBS and incubated for 1 hr at $60^{\circ} \mathrm{C}$.

Confocal microscopy. Heat-inactivated cultures of S. pneumoniae (5×10^{7} CFUs before heat inactivation) were stained with sera from naïve and immunized mice at 1:100
dilution for 30 ' at RT, followed by staining with Cy3-conjugated donkey anti-mouse IgG (Jackson Immunoresearch) for 30' at RT, and incubation with 1:1000 Hoechst 33342 (Thermo Fisher) for 5'. Bacterial cell suspensions were plated on glass slides in antifade reagent (Thermo Fisher) and imaged using Zeiss LSM 710 confocal microscope. Images were analyzed using the Zen software (Zeiss AG, Oberkochen, Germany).

Transmission electron microscopy. $5 \times 10^{6} \mathrm{CFU}$ of heat-inactivated S. pneumoniae serotype 14 were washed with HBSS buffer, incubated in HBSS, 4\% normal goat serum and 14.22 at $10 \mu \mathrm{~g} / \mathrm{ml}$ for 1 hr at $4^{\circ} \mathrm{C}$, washed 3 times with HBSS, incubated with HBSS, 4\% normal goat serum and 12 nm gold-labeled goat anti-mouse IgG (immunogold) for 2 hrs at $4^{\circ} \mathrm{C}$, and washed 3 times with HBSS again. All washes were performed in an Eppendorf microcentrifuge at maximal speed (16100g rcf) for 5 ', except the last washes (after immunogold incubation), which were performed at 9300 g rcf to prevent non-specific immunogold sedimentation. The suspension of immunogold labeled cells were first fixed in ice cold 2.5% glutaraldehyde in 0.1 M cacodylate buffer, and after a brief wash, pelleted and fixed in 1% osmium tetroxide. The pellets were dehydrated in graded ethanol series, treated in propylene oxide and embedded in EMbed 812/Araldite (Electron Microscopy Sciences, Hatfield, PA). The pellets were then re-embedded for subsequent sectioning to provide transverse profiles of the pellets. Thick sections $(2 \mu \mathrm{~m})$ were cut, mounted on glass slides and stained in toluidine blue for general assessment in the light microscope. Subsequently, 70 nm thin sections were mounted on parlodion-coated copper slot grids and stained with uranyl acetate and lead citrate for examination at 80kV on a Philips CM100 electron microscope (FEI, Hillsbrough OR). Images in tif format were documented using a Megaview III ccd camera (Olympus Soft Imaging Solutions GmbH,

Münster, Germany) and subsequently handled in GIMP.

ELISPOT. On the night before the experiment, dilutions of BSA ($2 \mu \mathrm{~g} / \mathrm{ml}$ and $5 \mu \mathrm{~g} / \mathrm{ml}$) and BSA-TS14 ($1 \mu \mathrm{~g} / \mathrm{ml}, 2 \mu \mathrm{~g} / \mathrm{ml}$ and $5 \mu \mathrm{~g} / \mathrm{ml}$) in $100 \mu \mathrm{l}$ were added to the wells of the ELISPOT plate (BD Biosciences, San Jose, CA), and the plate incubated at $4^{\circ} \mathrm{C}$ overnight. 5 days after intravenous immunization with $\mathrm{Q} \beta-\mathrm{TS} 14$ conjugates mouse spleens were harvested, and single cell suspensions were generated by passing the cells through a $70 \mu \mathrm{M}$ cell strainer (Corning Inc., Corning, NY) in sterile conditions. The ELISPOT plate was washed $5 x$ with sterile PBS and blocked with $200 \mu \mathrm{l} /$ well RPMI with 10% FBS for 30 'at RT. Suspensions of $5 \times 10^{5}, 2.5 \times 10^{5}$ and 10^{5} splenocytes in 100μ l were added to the wells of the ELISPOT plate in triplicates and incubated at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ in the dark for 18 hours. The plate was washed $5 x$ with PBS to remove cells and incubated with biotinylated anti-mouse $\operatorname{lgG}(1 \mu \mathrm{~g} / \mathrm{ml}$ in PBS with 5% FCS $)$ for 2 hours at RT. After five washes with PBS, $100 \mu \mathrm{l} /$ well of TMB substrate solution (Thermo Fisher, Waltham, MA) were added and incubated until colored spots developed. The plate was washed with tap water, dried and stored at RT in the dark. Spots were counted using a QuantiHub reader (MVS Pacific, Roseville, MN).

Production of B-cell hybridomas. Previously immunized C57BL/6 mice were boosted with the same $Q \beta$ formulation, followed by a final i.v. boost two weeks later without the adjuvant. On the same day, P3-x63-Ag8.653 mouse myeloma cells (ATCC CRL-1580) were recovered from cryopreservation and expanded to exponential cultures. Three days after the boost, spleens were harvested and splenocytes fused at a $4: 1$ ratio with mouse myeloma cells, using $50 \%(\mathrm{w} / \mathrm{v})$ Hybri-Max polyethylene glycol (PEG) solution (Sigma-Aldrich, St. Louis, MO). Fused cells were selected in media containing
hypoxanthine-aminopterin-thymidine (Sigma-Aldrich, St. Louis, MO) for 10 days, followed by an ELISA screen against BSA-TS14 or BSA-TS3. Positive clones were expanded in complete RPMI 1640 media containing hypoxanthine-thymidine (Sigma-Aldrich, St. Louis, MO). Positive wells were subcloned and retested by ELISA. All hybridoma cell lines were isotyped using an ELISA-based assay using isotype-specific antibodies (Jackson ImmunoResearch, West Grove, PA).

RNA isolation and RLM-RACE. Hybridomas were grown to approximately 5×10^{6} cells, and total RNA extracted using TRIzol (Life Technologies, Carlsbad, CA). FirstChoice RLM-RACE Kit (Life Technologies, Carlsbad, CA) was used for cDNA synthesis and amplification. According to the manufacturer's protocol, a 45 base RNA adapter oligonucleotide was ligated to the 5' end of full length mRNA, followed by reverse transcription with M-MLV reverse transcriptase and random decamers. Variable regions of both heavy $\left(\mathrm{V}_{\mathrm{H}}\right)$ and light $\left(\mathrm{V}_{\mathrm{L}}\right)$ chains were amplified using a 5 ' primer complementary to the adapter sequence, and 3^{\prime} primers complementary to either the constant region of the kappa light chain or the first domain of the constant region $\left(\mathrm{C}_{\mathrm{H}} 1\right)$ for each heavy chain respectively, as described (3). $5 \mu \mathrm{l}$ of cDNA were used for each PCR in a reaction volume of $50 \mu \mathrm{l}$ with the final concentrations of 0.2 mM dNTP (Roche, Indianapolis, IN), 1.5 mM MgCl_{2} (Roche, Indianapolis, IN), $0.5 \mu \mathrm{M}$ Betaine (Sigma-Aldrich St. Louis, MO), 2.5 U of Taq DNA polymerase (Roche, Indianapolis, IN) and $0.4 \mu \mathrm{M}$ of each primer. The thermal cycling profile was as follows: initial melting at $95^{\circ} \mathrm{C}$ for 3 minutes, 30 cycles of $95^{\circ} \mathrm{C}$ for 15 seconds, $40^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{H}}\right)$ or $50^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{L}}\right)$ for 30 seconds, and $72^{\circ} \mathrm{C}$ for 1.30 minutes, with a final elongation at $72^{\circ} \mathrm{C}$ for 30 minutes.

TA cloning. PCR products were separated on a 1% agarose gel and DNA of the
expected size extracted using Geneclean III Kit (MP Biomedicals, Santa Ana, CA). $2 \mu \mathrm{l}$ purified DNA was cloned into the pCR 2.1-TOPO vector (Life Technologies, Carlsbad, CA) and transformed into DH5a competent cells. After overnight incubation on kanamycin plates with X-Gal, white colonies were grown in LB with carbenicillin and minipreps performed for plasmid isolation. Clones containing inserts of the expected size were determined by restriction enzyme digestion with EcoR1 (Roche, Indianapolis, IN).

DNA sequencing and analysis. Samples were sequenced by Sanger DNA sequencing (GENEWIZ, Inc.) using the T7 promoter primer. The sequences were aligned and compared to the mouse immunoglobulin database of IMGT (4).

In-solution competition experiments. Fab14.22 at concentrations ranging from 62.5 nM to 2000 nM was injected onto BSA-TS14-derivatized surface of the CM5 chip to create a calibration curve. 500 nM Fab14.22 was incubated with increasing concentrations of free TS14, and these mixtures were injected onto the same surface. The calibration curve was then used to obtain the calculated concentration of Fab14.22 at each inhibitor concentration. These calculated concentrations were plotted against TS14 concentrations, and the inhibition curve was fit using Biacore T200 Evaluation software to obtain the dissociation constant.

Papain digestion of antibodies to produce Fab fragments. IgG antibodies were washed with 100 mM NaOAc pH 5.5 and 1 mM EDTA. 300 to 1500 ng papain (per 1 mg antibody) were pre-activated in $100 \mathrm{mM} \mathrm{NaOAc} \mathrm{pH} 5.5,1 \mathrm{mM}$ EDTA, 50 mM cysteine for 15 min at RT, and the antibody solution added to $1 \mathrm{mg} / \mathrm{ml}$. Reaction was carried out at $35^{\circ} \mathrm{C}$ for 30 min to 2 hours with occasional agitation. Reaction was quenched by 70 mM iodoacetamide, and the Fab isolated from Fc and uncleaved antibody by a Protein A
column (GE Healthcare, Piscataway, NJ). The purity of the Fabs was confirmed by PAGE gel. The Fabs were then purified on a Superdex 75 size-exclusion column with PBS as a mobile phase.

Crystal structures of Fab14.22 and Fab14.22-TS14 complex. Crystals of Fab14.22 $(5.6 \mathrm{mg} / \mathrm{ml})$ were formed in $1: 1(\mathrm{v} / \mathrm{v})$ protein/reservoir drop equilibrated against 3.6 M ammonium sulfate, with 10\% PEG400 and 10\%MPD, in 1M of HEPES (pH 7.5) reservoir solution. Crystals for the complex between the tetrasaccharide and Fab14.22 (10:1 ligand:protein) were obtained in $0.8 \mathrm{M} \mathrm{NaHPO} 4 / 1.2 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO} 4,0.1 \mathrm{M}$ sodium acetate (pH 4.5), and 5\% Jeffamine 900.

Data collection and crystal structure determination. Data for unliganded Fab14.22 and its complex with TS14 were collected at the Advanced Photon Source (APS) of the Argonne National Laboratory at beamlines 23 ID-D and 23ID-B, respectively. Data were indexed and processed using HKL2000 (5). The Fab14.22 crystal structure (PDB ID: 5JOR) was solved by molecular replacement using the coordinates from PDB ID 1QGC as the search model, while the coordinates from the apo-form of Fab14.22 were used as a search model for the tetrasaccharide-Fab14.22 complex (PDB ID: 5JOP) with Phaser (6). Structure refinement was carried out with Phenix (7) and modeling with Coot (8). Data quality and refinement statistics are outlined in Table S5. Figures were generated using PyMOL (9) and LigPlot (10). The buried surface area of the Fab14.22 complex was calculated using MS (11).

Peptide and glycopeptide synthesis.

Peptides. Sequences of the peptides used are provided in Supplemental Table 6. p13-alkyne and p16-alkyne precursor peptides were purchased from Avanti Polar

Lipids. $Q \beta$ peptides for T cell restimulation and intracellular cytokine staining were selected in $\mathrm{Q} \beta$ coat protein sequence based on the Immunoepitope database (IEDB) prediction of best binders of MHC class II I-Ab (12). Each Q β peptide pool was formed by one of the three peptides from different regions of $Q \beta$ coat protein with the highest ranking in the binding prediction algorithm, and two neighboring peptides offset by one amino acid (see Supplemental Table 6). Peptides were synthesized at the La Jolla Institute for Allergy and Immunology using standard Fmoc chemistry. Extended 13-mers p13*-alkyne and p16*-alkyne were chain assembled by manual Fmoc-SPPS, using 0.1 mmol pre-loaded resin. (Fmoc-Glu-Wang, $0.55 \mathrm{mmol} / \mathrm{g}$; Fmoc-Leu-Wang, $0.75 \mathrm{mmol} / \mathrm{g}$; Fmoc-Asn-PEG-HMPA, $0.75 \mathrm{mmol} / \mathrm{g}$). During chain assembly, Fmoc protecting groups were removed by treating the resin with 2 washes of a solution of $20 \% 4$ Methylpiperidine in DMF for 90 s . Except where noted, for coupling, Fmoc-amino acids (0.5 mmol) were dissolved in 1.25 mL of 0.4 M HCTU in DMF (0.5 mmol), and DIEA $(0.75 \mathrm{mmol}, 130 \mu \mathrm{~L})$ was added. After 30 s , the solution was added to the resin. Coupling times were 25 min . Alternatively, Fmoc-Lys(ivDde)-OH ($0.2 \mathrm{mmol}, 115 \mathrm{mg}$) was dissolved in 0.5 mL of 0.4 M HATU in DMF (0.2 mmol) and DIEA ($0.3 \mathrm{mmol}, 38.7$ $\mu \mathrm{L}$) was added. After 30 s , the solution was added to the resin. Following chain assembly, the terminal Fmoc group was removed and Boc-anhydride ($0.25 \mathrm{mmol}, 54.5$ mg) was dissolved in 0.5 mL of DMF and DIEA ($0.5 \mathrm{mmol}, 43.5 \mu \mathrm{~L}$) was added. After 30 s , the solution was added to the resin. Coupling time was 30 min , and coupling efficiency was checked with a Kaiser test. The Lys side chain protecting group ivDde was removed with 4 washes of 4% hydrazine hydrate in DMF for 5 min . After deprotection, the resin (0.05 mmol) was treated to incorporate 4-Pentynoic acid. 4-

Pentynoic acid ($0.1 \mathrm{mmol}, 9.8 \mathrm{mg}$) was dissolved in $250 \mu \mathrm{~L}$ of 0.5 M HCTU in DMF (0.1 mmol) and DIEA ($0.15 \mathrm{mmol}, 26.1 \mu \mathrm{~L}$) was added. After 30 s , the solution was added to the resin. Coupling time was 30 min, and coupling efficiency was checked with a Kaiser test. Peptide p16*-alkyne was synthesized using the building block Fmoc$\operatorname{Asp}(\mathrm{OtBu})(\mathrm{Dmb}) \mathrm{GlyOH}$ to preclude aspartimide formation. Peptides were cleaved from the resin using a cleavage cocktail that contained TFA (95\%), TIS (2.5\%) and H2O (2.5%). Resins were treated with the cleavage cocktail for 120 min . Afterwards the resin was filtered and TFA was evaporated using a gentle stream of N2 over the mixture. The crude peptides were precipitated with cold ether, and dissolved in 30\% Buffer B (0.05\% TFA, $90 \% \mathrm{CH} 3 \mathrm{CN}, 10 \% \mathrm{H} 2 \mathrm{O}$) in Buffer $\mathrm{A}(0.05 \%$ TFA in H 2 O$)$ and lyophilized.
gp13 and gp16. The following solutions were made: $20 \mathrm{mM} \mathrm{p13-alkyne}$ in water, 19 mM p16-alkyne in DMSO/water (1:4), 20 mM azido sugar TS14 in DMSO, 20 mM CuSO4 in water, 20 mM tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) ligand in water, 20 mM aminoguanidine in water, 20 mM sodium ascorbate (made before use). Reagents were added in the following sequence: $200 \mu \mathrm{~L}$ p13-alkyne or $260 \mu \mathrm{~L}$ p16-alkyne (4 $\mu \mathrm{mol}, 1 \mathrm{eq})$, TS14 (1.2 eq, $4.8 \mu \mathrm{~mol}, 240 \mu \mathrm{~L}$), premixed CuSO4 (2eq, $8 \mu \mathrm{~mol}, 400$ $\mu \mathrm{L}) /$ ligand ($2 \mathrm{eq}, 8 \mu \mathrm{~mol}, 400 \mu \mathrm{~L}$) solution, aminoguanidine (5 eq, $20 \mu \mathrm{~mol}, 1000 \mu \mathrm{~L}$), sodium ascorbate ($5 \mathrm{eq}, 20 \mu \mathrm{~mol}, 1000 \mu \mathrm{~L}$). Reaction mixture was stirred gently at room temperature overnight. The product was isolated using a semi-preparative HPLC Restek C18 column (\#9604577) with gradient 0-20\% CH3CN/0.1\% TFA over 50 min for gp13 and 0-40\% CH3CN/0.1\% TFA over 50 min for gp16. Fractions were lyophilized to give 9.2 mg of gp13 (pale solid; MS, m/z $994\left(\mathrm{MH}^{2+}\right)$) and 9.0 mg of gp16 (white solid; MS, m/z 1015 $\left(\mathrm{MH}^{2+}\right)$).
gp13*. A solution of GP13 ($2.51 \mathrm{mg}, 1.8 \mu \mathrm{~mol}$) in DMSO $(123 \mu \mathrm{~L})$, was added TS14 ($43 \mu \mathrm{~L}$ from a 100 mM solution in $\mathrm{H} 2 \mathrm{O}, 2.16 \mu \mathrm{~mol}$), THPTA ($108 \mu \mathrm{~L}$ from a 50 mM solution in $\mathrm{H} 2 \mathrm{O}, 5.4 \mu \mathrm{~mol})$, CuSO4.5H2O ($21.6 \mu \mathrm{~L}$ from a 50 mM solution in $\mathrm{H} 2 \mathrm{O}, 1.08 \mu \mathrm{~mol}$), amino guanidine (108 $\mu \mathrm{L}$ from a 100 mM solution in $\mathrm{H} 2 \mathrm{O}, 10.8 \mu \mathrm{~mol}$), and freshly prepared sodium ascorbate ($108 \mu \mathrm{~L}$ from a 100 mM solution in $\mathrm{H} 2 \mathrm{O}, 10.8 \mu \mathrm{~mol}$). The solution was stirred at $37{ }^{\circ} \mathrm{C}$ for 10 hrs . The solution went from colorless to pale yellow. Upon consumption of TS14 as monitored by ESI-MS, the reaction was diluted to 1 mL with H 2 O and the crude was purified by semi-preparative $\mathrm{RP}-\mathrm{HPLC}$ (column = Zorbax SB-C18 (5 $\mu \mathrm{m}, ~ 9.4 \times 250 \mathrm{~mm}$); linear gradient of 10 to 50% MeCN+0.1\%TFA/H2O+0.1\%TFA during 20 min ; flow rate $=5.0 \mathrm{~mL} / \mathrm{min}$). Fractions containing the product were lyophilized to dryness. Mass of product $=1.4 \mathrm{mg}$ and mass of recovered GP13 $=1.4 \mathrm{mg}$. See Supplemental Figure 10 for ESI-MS data.
gp16*. A solution of GP16 (3.12 mg, $2.1 \mu \mathrm{~mol})$ in DMSO $(113.4 \mu \mathrm{~L})$, was added TS14 ($50 \mu \mathrm{~L}$ from a 100 mM solution in $\mathrm{H}_{2} \mathrm{O}, 2.52 \mu \mathrm{~mol}$), THPTA ($126 \mu \mathrm{~L}$ from a 50 mM solution in $\left.\mathrm{H}_{2} \mathrm{O}, 6.3 \mu \mathrm{~mol}\right), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(25.2 \mu \mathrm{~L}\right.$ from a 50 mM solution in $\left.\mathrm{H}_{2} \mathrm{O}, 1.26 \mu \mathrm{~mol}\right)$, amino guanidine ($126 \mu \mathrm{~L}$ from a 100 mM solution in $\mathrm{H}_{2} \mathrm{O}, 12.6 \mu \mathrm{~mol}$), and freshly prepared sodium ascorbate ($126 \mu \mathrm{~L}$ from a 100 mM solution in $\mathrm{H}_{2} \mathrm{O}, 12.6 \mu \mathrm{~mol}$). The solution was stirred at $37^{\circ} \mathrm{C}$ for 10 hrs . The solution changed from colorless to pale yellow. Once the TS14 was consumed as monitored by ESI-MS, the reaction was diluted to 1 mL with $\mathrm{H}_{2} \mathrm{O}$ and the crude was purified by semi-preparative RP-HPLC (column = Zorbax SB-C18 (5 $\mu \mathrm{m}, 9.4 \times 250 \mathrm{~mm})$; linear gradient of 10 to $50 \% \mathrm{MeCN}+0.1 \% \mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA during 20 min ; flow rate $=5.0 \mathrm{~mL} / \mathrm{min}$). Fractions containing the product were lyophilized to dryness. Mass of product $=1.4 \mathrm{mg}$ and mass of recovered GP16 $=1.7 \mathrm{mg}$. See Supplemental

Figure 10 for ESI-MS data.
I-A ${ }^{\text {b }}$ purification, loading and western blotting. I-A - CLIP with a thrombin cleavage site to remove the CLIP peptide was expressed and purified as described $(13,14)$. The protein was cleaved by thrombin (5 units per $1 \mathrm{mg} \mathrm{I}-\mathrm{A}^{\mathrm{b}}$) at $37^{\circ} \mathrm{C}$ for 1 hour and then overnight at RT. Thrombin was inactivated by adding 1 mM Pefabloc, and cleaved $\mathrm{I}-\mathrm{A}^{\mathrm{b}}$ was purified by size exclusion chromatography. Glycopeptides (20- to 200 -fold excess over $\mathrm{I}-\mathrm{A}^{\mathrm{b}}$) were loaded onto $\mathrm{I}-\mathrm{A}^{\mathrm{b}}$ in 200 mM malonate pH 5.0 in the presence of recombinant HLA-DM (1:10 to I-A ${ }^{\text {b }}$) for 1-3 days at RT. For western blotting, the complexes were separated by native gel electrophoresis, transferred to PVDF membranes, and blots developed using LI-COR Odyssey infrared imaging system (LiCOR, Lincoln, NE). For flow cytometry, the I-A ${ }^{\text {b}}$-glycopeptide complexes were incubated with PE-labeled streptavidin (SNN1007, Thermo Fisher, Waltham, MA) at 4:1 molar ratio in PBS for 3 hours to overnight to form streptavidin tetramers, and used in staining without further purification.

Flow cytometry. 5 days after intravenous or intramuscular immunization mouse splenocytes, or inguinal, popliteal and periaortal lymph nodes, respectively, were harvested, and single cell suspensions were generated by passing the cells through a 70 $\mu \mathrm{M}$ cell strainer. All incubations were carried out in PBS with 2% fetal bovine serum and 2 mM EDTA. Red blood cells were lysed in $0.165 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution at RT for 5^{\prime}, and the cells were incubated in Fc block for 15 minutes at $4^{\circ} \mathrm{C} .250 \mathrm{nM}$ streptavidin-I-A A^{b} tetramers were then added for 1 hour at RT. After washing, cells were incubated with directly conjugated anti-CD3ع-FITC (clone145-2C11), anti-B220-APC (clone RA3-6B2), anti-CD8a-APC (clone 53-6.7), anti-CD49b-APC (clone DX5), anti-CD11b-APC (clone

M1/70), anti-CD4-APC-Cy7 (clone RMA-5), all from BioLegend (San Diego, CA), for 15 minutes at $4^{\circ} \mathrm{C}$. Flow cytometry was carried out on Miltenyi MACSQuant (Miltenyi Biotec, Bergisch Gladbach, Germany) with propidium iodide added to enrich for live cells. Gating and population analysis was done using FlowJo (FlowJo LLC, Ashland, OR).

Intracellular cytokine staining. 5 days after secondary intramuscular immunization mouse inguinal, popliteal and periaortal draining lymph nodes were harvested and homogenized in complete RPMI with 10\% FCS, $2 \mathrm{mg} / \mathrm{ml}$ Collagenase D (Roche, Indianapolis, IN) and $100 \mu \mathrm{~g} / \mathrm{ml}$ DNAse I (Sigma-Aldrich, St. Louis, MO) for 1 hour at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. The reaction -was stopped by adding EDTA to 10 mM . Cells were counted, and 5×10^{5} to 1×10^{6} cells per sample were incubated in complete RPMI with 10% FCS with $10 \mu \mathrm{~g} / \mathrm{ml}$ Q β peptide or glycopeptide pools in the presence of $2 \mu \mathrm{~g} / \mathrm{ml}$ anti-CD28 (clone 37.51, from BD Biosciences, San Jose, CA) for 5 hours. Brefeldin A (Sigma-Aldrich, St. Louis, MO) was added to $10 \mu \mathrm{~g} / \mathrm{ml}$ after the first hour. After wash cells were incubated in FACS buffer (PBS with 2% fetal bovine serum and 2 mM EDTA) with $10 \mu \mathrm{~g} / \mathrm{ml} 2.4 \mathrm{G} 2$ Fc block and directly conjugated anti-CD3 - -BV510 (clone 145-2C11), anti-B220-PE-Cy7 (clone RA3-6B2), anti-CD8a-PE-Cy7 (clone 53-6.7), anti-CD11b-PE-Cy7 (clone M1/70), anti-CD4-APC-Cy7 (clone RMA-5) and anti-CD44-Pacific Blue (clone IM7), all from BioLegend (San Diego, CA), for 20 minutes at $4^{\circ} \mathrm{C}$. Cells were then fixed and permeabilized using BD Biosciences Cytofix/Cytoperm kit, according to manufacturer instructions. Cells were left overnight in Perm/Wash solution at $4^{\circ} \mathrm{C}$. Next morning, cells were stained in Perm/Wash solution with directly conjugated anti-IFN γ-APC (clone XMG1.2) and ant-TNFa-FITC (clone MP6-XT22), from BioLegend (San Diego, CA), for 20 minutes at $4^{\circ} \mathrm{C}$. Flow cytometry was carried out on Miltenyi MACSQuant (Miltenyi

Biotec, Bergisch Gladbach, Germany). Gating and population analysis was done using FlowJo (FlowJo LLC, Ashland, OR).

Supplemental Figures

Supplemental Figure 1. VLP characterization and molecules used in the study. (A) Gel filtration chromatograms of $Q \beta$ VLP, $Q \beta$-alkyne and $Q \beta-T S 14-80$ on Superose 6 column. (B) Representative chromatograms of $Q \beta$-alkyne and $Q \beta-T S 14-80$ obtained by microfluidic gel electrophoresis; conjugation of the sugar causes a shift in the electrophoretic mobility of the protein subunit, resulting in a separate peak on the chromatogram. (C) Chemical structure of the adjuvant PBS-57.
A

BSA-TS14(EDC)

B

 10\% DMSO in PBS
pH 7.0, RT, 16 h

BSA
C

D

E

Supplemental Figure 2. BSA-TS antigens for ELISA. (A, B) Synthesis of test antigens for ELISA and SPR. For both TS14 and TS3 the carrier protein and the chemical linkage are changed to avoid detecting antibodies against Qß or the linker. (A) Synthesis of BSA-TS14. (B) Synthesis of BSA-TS3. (C-E) Response of Prevnar-immunized humans and mice to short synthetic glycans. (C) Human plasma IgG response to BSA-TS3 and BSA-TS14 at 1:200 dilution. (D) Human plasma IgM response to BSA-TS3 and BSATS14 at 1:200 dilution. (E) Mouse serum IgG response to BSA-TS3 and BSA-TS14 at 1:100 dilution.

Supplemental Figure 3. Anti-TS14 antibodies bind S. pneumoniae serotype 14 capsule and are protective against infection in a passive immunization model. (A) Fluorescent images of S. pneumoniae serotype 14 stained with naïve or $Q \beta-T S 14-$ immunized mouse sera. (B) Transmission electron microscopy images of S. pneumoniae serotype 14 stained with 14.22 antibody and a gold nanoparticle-conjugated secondary antibody, or secondary antibody alone. (C) Survival of NOD/SCID mice after intra-tracheal infection with $10^{7}-10^{8}$ CFUs of S. pneumoniae serotype 14 . The animals were injected intra-peritoneally with either PBS or $100 \mu \mathrm{ggG14.22} 24$ hours prior to infection. 29 mice per group, pooled from 6 independent experiments. (D) Titers of S. pneumoniae in the lungs of infected mice 5 days after infection. Dashed line: limit of detection.

A

	FR1	CDR1	FR2	CDR2	FR3	CDR3	FR4
14.2	EVQLQQSGPELVRPGSSVKMSCKTS	GFSFITYA	INWLKQRPGQGLEWIGY	VYIGNGYT	DHNKKFKDKATLTSDPSSSTAFMQLSSLTSEDSGIYFC	ARRGYPWSFDF	WGTGTTVTVSS
14.6	QVQLQQPGAELVKPGASVKLSCKAS	GYTETSYW	MHWVKQRPGQGLEWIGM	IHPNSGSS	KHNEKFKSKATLTVDKSSNTAYMQLSSLTSEDSAVYYC	ARSDFYGNWYFDV	WGTGTTVTVSS
14.10	EVQLQQSGTELVRPGSSVKMSCKTS	RYTLTTHA	INWVKQRPGQGLEWIGY	IYIGNGYS	DYNEKFKGKATLTSDTSSSTAYMQLSSLTSTDSAIYFC	TRRGYPWYFDVW	WGTGTTVTVSS
14.13	EVQLQQSGPELVKPGASVKMSCKAS	GYTETDYY	IHWVKQSHGKSLEWIGY	IYPFNGVT	TYNQNFKGKATLTVNMSSSTAYMELRSLTSDDSAVYYC	ARWDS	WGQGTTLTVSS
14.15	EVQLQQSGAELVRPGSSVKMSCKTS	GFSITKYA	INWLKQRPGQGLEWIGY	IYIGNGYT	DYNEKFTGKATLTSDTSSKTAYMHLSSLTSEDSALYFC	ARRGYPWYFDV	WGTGTTVTVSS
14.17	EVQLQQSGPELVKPGASVKMSCRAS	GYTETEYY	IHWVRQSHGKSLEWIGY	VHPNDGGT	TYNQKFRGKATLTVNRSSDTAYLELRSLTSEDSAVYYC	ARWDY	WGQGTTLSVSS
14.18	EVQLQQSGPELVKPGASVKMSCEAS	GYTFTEYY	IHWVKQSHGKSLEWIGY	IHPNTGDA	TYNQNFRGKATLTVSRSSNTAYMELRSLTSEDSAVYYC	ARWDS	WGQGTTLTVSS
14.20	EVQLQQSGPELVKPGASVKMSCEAS	GYTETEYY	IHWVKQSHGKSLEWIGY	IHPNTGDA	TYKQNFRGKATLTVSRSSNTAYMELRSLTSEDSGVYYC	ARWDS	WGQGTTLTVST
14.21	QVQLQQPGAEVVTPGASVKLSCKAS	GYVFTIYY	IHWVKQRPGQGLDWIGM	IHPNTGNT	NYNEKFRSKATLTTVDRSSNTAYMQLSSLTSEDSAVYYC	ARWDY	WGQGTTLTVSS
14.22	EVQLQQSGPELIKPGASVKMSCEAS	GYIFTEYY	IHWVKQIQGRSLEWIGY	VHPKTGDV	IYNQNFRGKATLTVNRSSNTAYMELHSLTSEDSAVYYC	ARWDS	WGQGTTLTVSS

	FR1	CDR1	FR2	CDR2	FR3	CDR3	FR4
14.2	DILMTQTPLSLPVSLGDQASVSCRSS	QSIVHNDGNTY	LEWYLQKPGQSPKVLIY	KVF	NRFSGVPDRISGSGSGTDFTLTITRVEAEDLGVYYC	FQGSHVPYT	FGGGTKLEIK
14.6	DIQMTQSPSSLSASLGERVSLTCRAS	QEISGY	LSWLQQKPDGTIKRLIY	AAS	TLDSGVPKRESGSRRSGSDYSLTISSLESEDFADYYC	LQYASYPRT	FGGGTKLEIK
14.10	DVLMTQTPLSLPVSLGDQASISCRSS	QSIVHSNGNTY	LEWYLQKPGQSPKLLIY	KVS	NRFSGVPDRFSGSGSGGTDFTLKISRVEAEDLGVYYC	FQGSHVPYT	FGGGTKLEIK
14.13	DVLMTQTPLSLPVSLGDQASISCRSS	QTILHSDGNTY	LEWYLQKPGQSPKLLIY	KVS	TRFSGVPDRESGSGSGGTDFTLKVSRVEAEDLGVYYC	FQGSHVPRT	FGGGTQLEIK
14.15	NVLVTQTPLSLPVSLGDEASISCRSS	QSIVHSNGNTY	LEWYLQKAGQSPKLLIY	KVS	NRFSGVPDRFSGSGSGGTDFTLKISRVEAEDLGVYYC	FQGSHVPYT	FGGGTKLEIK
14.17	DVLMTQTPLSLPVSLGDEASISCKSS	QSIVHSDGNTY	LEWYLQRPGQSPKLLIY	RVF	LRFSGVPDREAGSGSGTDFTLKISRVEAEDIGIYYC	FQGSHVPRT	FGGGTKLEIT
14.18	DVLLTQTPLSLPVNLGDQASISCRSS	QSIVHSDGYTY	LEWYLQRPGQSPKLLIY	RVY	KRFSGIPDRESGSGSGMDFTLKISRVEAEDIGVYYC	FQGSYVPRT	FGGGTKLEIK
14.20	DVLMTQTPLSLPVNLGDQASISCRSS	QSIVHSDGYTY	LEWYLQKPGQSPKLLIY	RVS	KRFSGIPDRFSGSGSGMDFTLKISRVEAEDLGVYYC	FQGSYVPRT	FGGGTKLEIK
14.21	DVLLTQTPVSLPVSLGDQGSISCRSS	QSIVHSDGNTY	LEWYLQKPGQSPKLLIY	RVY	IRFSGVPDRESGSGSGTDFTLKINRVEAEDLGVYYC	FQGTHVPRT	FGGGTKLEIK
14.22	DVLLTQTPLSLPVNLGDQASISCRSS	QTILHSDGYTY	LEWYLQRPGQSPKLLIY	RVY	KRFSGIPDRFRGSGSGMDFTLTISGVEAEDLGIYYC	FQGSYVPRT	FGGGTKLEIK

B

	FR1	CDR1	FR2	CDR2	FR3	CDR3	FR4
3.1	EVNLEDSGGGLVQPGGSMKLSCVAS	GFTESTEW	MHWVRQSPEKGLEWVAQ	IKLRSENYAT	YYAESVKGRETVSRDDSRSSVYLHMNNLRAEDTGIYYC	TSLRRYFVMDY	WGQGTSVTVSS
3.2	EVKLEESGGGLVQPGGSMRLSCVAS	GLTFSNFW	MHWVRQSPEKGLEWVAQ	IKLKSENYAT	HYAESVKGRFTISRDDSKSSVYLQMYNLRPEDTGIYYC	TSLRRYFVLDY	WGQGTSVTVSS
3.3	EVNLEESGGGLVQPGGSIKLSCVAS	GLTESNFW	MHWVRQSPEKGLEWVAQ	IKLKSENYAT	HYAESVKGRETISRDDSKSGVYLQMNSLRAEDTGIYYC	TSLRRFFPLDY	WGQGTSVTVSS
3.4	EVTLEESGGGLVQPGGSMKLSCVAS	GFAFSTEW	MHWVRQSPERGLEWVAQ	IKLKSENYAT	HYAGSVNGRFTISRDDSENRVYLQMNNLWTEDTGIYYC	TSLRRFFPMDY	WGQGTSVTVSS
3.5	QVQLQQSDAELVKPGASVKISCKVS	GYTETDHS	IHWMKERPEQGLEWIGY	FYPRDSST	KYNEKFKGRATLTADKSSSTAYMQLNSLTSEDSAIYFC	ARYSSTSGEVD	WGQGTLVTVSA
3.7	EMNLEESGGGLVHPGGSMKLSCVAS	GFTESTFW	MHWVRQSPEKGLEWIAQ	IKLRSENFAT	HYAESVKGRFTISRDDSRSSVYLQMNNLGAEDTGIYYC	TSLRRFFIMDY	WGQGTSVTVSS
3.8	EVNLEESGGGLVQPGGSMKLSCVAS	GFTESTEW	MHWVRQSPEKGLEWVAQ	IKLRSENYAT	HYAESVKGRFTISRDDSRSSVYLQMNNLRTADTGIYYC	TSLRRFFPLDY	WGQGTSVTVSS
3.9	EVTLEESGGGLVQPGGSMKLSCVAS	GEAFSTFW	MHWVRQSPERGLEWVAQ	IKLKSENYAT	HYAGSVNGRFTISRDDSENRVYLQMNNLWTEDTGIYYC	TSLRRFFPMDY	WGQGTSVTVSS
3.10	EVQLVESGGDLVKPGGSLKLSCAAS	GFTESTYG	MSWVRQTPDKRLEWVAT	ISSGGRYT	NYPDSVKGRFTISRDNAKNTLYLQMRSLKSEDTAMYNC	ARHRGPITTVTHWYFDV	WGTGTTVTVSS
3.11	EVQLQQSMAELVRPGASVKLSCIAS	GENIKSAY	IHWMKKRPEQGLEWIGR	VDPAKGII	KSAPRFLGKATITADASSNTAYMQLSSLTSEDTAIYYC	ARSFYYGNPYFDY	WGQGTTLTVSS
3.12	EVQLQQSMAELVRPGASVKLSCIAS	GENIKSAY	IHWMKKRPEQGLEWIGR	VDPAKGII	KSAPRFLGKATITADASSNTAYMQLSSLTSEDTAIYYC	ARSFYYGNPYEDY	WGQGTTLTVSS
3.13	QVQLQQPGTEVVKPGASVKLSCKAS	GYTLISTW	MHWIKQRPGQGLEWIGN	INPRNGGT	NYNEKFKNKATLTTVDKSSNTAYMQLNSLTSEDSAVYYC	ARRGDYGSGPAWLAY	WGQGSLVIVSA
3.14	EVQLQQSVAELVRPGASVRLSCTVS	GENIKNTY	MHWVRRRPEQGLEWIGR	IDPASVIT	KYAPKFQVKATITADTSSNTAYLQLSSLTSEDTAIYFC	ARSFYYGNPYIDY	WGLGTTLTVSS

	FR1	CDR1	FR2	CDR2	FR3	CDR3	FR4
3.1	DVFMTQTPLTLSVTIGQPASISCRSS	QSLLDY.DGRTY	LNWLLQRPGQSPKRLIY	LVS	KLDSGVPDRFTGSGSGTDFTLRISRVEADDLGIYYC	WQATYFPLT	FGGGTKLELK
3.2	DVVMTQTPLTLSVTIGQPASISCKSS	QSLLDS.DGRTY	LNWLLQRPGQSPKRLIY	LVS	KLDSGVPDRESGSGSGGTDFTLKISRVEAEDLGLYYC	WQATHFPLT	FGAGTKLELK
3.3	DVVMTQTPLTLSVTIGQPTSISCKSS	QSLLDS.DGKTY	LNWLLQRPGQSPKRLIY	LVS	KLDSGVPDRESGSGSGTTDFTLKISRVEAEDLGLYYC	WQATHFPLT	FGAGTKLELK
3.4	DVVMTQTPLTLSITIGQPASISCMSS	QSLLDS. DGKTY	LNWLIQRPGQSPKRLIY	LVS	KLDSGVPDRFSGSGGSGTYFTLRISRVETEDLGIYYC	WQATHFPLT	FGAGTKLELK
3.7	DVVMTQTPLTLSVTIGQPASISCKSS	QSLLDT. DGKTY	MGWLLQRPGQSPKRLIF	LVS	KLDSGVPDRETGSGSGTDFTLKISRVEAEDLGVYYC	WQSTHFPLT	FGAGTKLELK
3.8	DVVMTQTPFTLSVTIGQPASISCMSS	QSLLDS.DGYTY	LNWLLQRPGQSPKRLIY	LVS	KLDSGVPDRFSGSGSGTDFTLKISRVEAEDLGLYYC	WQSTYFPLT	FGAGTKLELK
3.9	DIVLTQSPASLTVSLGQRATISCRAS	KSVST..SGYSY	MHWYQQKPGQSPKLLIY	LAS	TLQSGVPARVSGSGSGTDFTLNIHPVEEEDAATYYC	QHSRDLPYT	FGGGTKLEVK
3.10	DVLMTQSPLSLPVILGDRASISCRSS	QSIVHS.NGNTY	LEWYLQKPGQSPKLLIY	KVS	NRFSGVPDRFSGGSGSGTDFTLKISRVEAEDLGVYYC	FQGSHVPWT	FGGGTKLEIK
3.11	DVVMTQTPLTLSVTIGQPASISCKSS	QSLLYS.NGKTY	LNWLLQRPGQSPKRLIY	LVS	KLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC	VQGTHFPLT	FGAGTKLELK
3.12	DVLMTQTPLSLPVSLGDQASISCRSS	QSIVHS.NGNTY	LEWYLQKPGQSPKLLIY	KVS	NRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYYC	FQGSHPVLT	FGAGTKLELK
3.13	DVVMTQTPFFLPVSLGDQASISCRSS	QSLVHS.NGNTY	FHWYLQKPGQSPKLLIY	KVS	NRESGVPDRESGSRRSGTDFTLKISRVEAEDLGVYFC	SQSTHVPYT	FGGGTKLEIK

Supplemental Figure 4. Protein sequences of anti-TS14 and anti-TS3
monoclonal antibodies. (A) Anti-TS14 antibodies. (B) Anti-TS3 antibodies. Sense
mutations from the germline sequence are labeled in red. CDRs and FRs are assigned according to the IMGT database. Light chains of antibodies 3.5 and 3.14 were not sequenced due to technical difficulties of sequencing $\lg \lambda$ genes.

Fab14.22 for free TS14. (A) Calibration curve based on SPR signal for different concentrations of Fab14.22 binding to TS14-BSA surface (black dots - individual measurements, line - fit). Red dots: signal generated by 500 nM Fab 14.22 in the presence of different concentrations of free TS14 (indicated by red numbers). (B) Calculated concentration of Fab14.22 plotted against the concentration of free TS14. Black: fit using the Biacore T200 Evaluation Software.

Supplemental Figure 6. The interaction network forming the molecular basis of the nanomolar binding of TS14 tetrasaccharide to Fab14.22. Figure generated using Ligplot (10).

Supplemental Figure 7. IgM response of wild-type and MHC class II^{-1} mice. Response measured in serum at 1:200 dilution.

Supplemental Figure

8. Detection of glycopeptide-specific \mathbf{T} cells in mice immunized with Qß-TS14. (A) TS14 does not compete with ovalbumin peptide for binding I-Ab. Left: Native SDS-PAGE gel of I-Ab-OVA peptide 323-339 complexes formed at different concentrations of OVA peptide in the presence or absence of 1.5 mM TS14azide. Right: quantitative determination of the gel band areas from the gels on the left. (B) TS14 binding to $\mathrm{I}-\mathrm{Ab}$ is not detected by western blot with 14.22 monoclonal antibody. (C) Detection of glycopeptide-specific CD4 T cells in mouse spleen after secondary immunization. (D) Detection of glycopeptide-specific CD4 T cells in mouse lymph nodes
after primary immunization.

B

Supplemental Figure 9. Indirect evidence for the generation of glycopeptidespecific CD4 T cells after immunization with Qß-TS14. (A) TS14-specific IgMs were measured in post-prime and post-boost sera of immunized mice by ELISA. Left: dilution curves. Dashed lines: post-prime; solid lines: post-boost. Right: ELISA signal at 1:50 dilution generated by post-boost sera was divided by the signal from post-prime sera, resulting in a relative increase in antibody levels after boosting. Each dot represents an individual mouse. Number of mice: 4 for free TS14, 9 for glycopeptide boost, data pooled from two independent experiments. Animals with either post-prime or post-boost lgM response at 1:50 dilution below background of 0.136 were excluded from analysis (1 mouse for TS14 boost, 1 mouse for GP boost). Mean \pm s.d. values are reported. (B) Intracellular cytokine staining of CD4 T cells in the lymph nodes of a naïve mouse after

5-hour restimulation with the indicated peptides. Data representative of two independent experiments.

Supplemental Figure 10. ESI-MS analysis of peptides and glycopeptides. (A)
p13*-alkyne and gp13*. (B) p16*-alkyne and gp16*.

Supplemental Tables

Supplemental Table 1. List of polysaccharides immobilized on the microbial glycan array.

Chart\#	BACTERIA / STRAIN
1	Providencia stuartii O49
2	Providencia stuartii O52
3	Pseudomonas aeruginosa O4 (Habs serotype 4)
4	Pseudomonas aeruginosa O1 (Fisher immunotype 4)
5	Pseudomonas aeruginosa O2 (Fisher immunotype 3)
6	Pseudomonas aeruginosa 013 (Sandvik serotype II)
7	Pseudomonas aeruginosa 09 (9a, 9b, 9d)
8	Pseudomonas aeruginosa O6a (Habs serotype 6, fraction Ila)
9	Pseudomonas aeruginosa O6a (Habs serotype 6, fraction IIb)
10	Salmonella typhimurium SL 11881 (Re mutant)
11	Salmonella typhimurium TV 119 (Ra mutant)
12	Salmonella typhimurium SL 684 (Rc mutant)
13	Pseudomonas aeruginosa 010
14	Salmonella typhimurium dodecasaccharide
15	Salmonella enteritidis dodecasaccharide
16	Salmonella typhimurium LPS
17	Serratia marcescens LPS
18	Escherichia coli K235 LPS
19	Escherichia coli O128-B12 LPS
20	Salmonella enterica abortus equi LPS
21	Salmonella typhosa LPS
22	Salmonella enteritidis LPS
23	Shigella bodyii type 2
24	Shigella bodyii type 4
25	Shigella bodyii type 10
26	Shigella dysenteriae type 3
27	Shigella dysenteriae type 8 (batch 12)
28	Shigella dysenteriae type 11
29	Shigella dysenteriae type 13
30	Escherichia coli O29
31	Escherichia coli O40
32	Escherichia coli O106
33	Escherichia coli O130
34	Escherichia coli O148
35	Escherichia coli O150
36	Escherichia coli O180
37	Proteus mirabilis O3a, 3c (G1)
38	Proteus mirabilis O8 (TG326)
39	Proteus mirabilis O10 (HJ4320)
40	Proteus mirabilis O29a, 29b (2002)
41	Proteus mirabilis O50 (TG332)
42	Proteus mirabilis O54a, 54b (10704)
43	Proteus mirabilis O57 (TG319)
44	Proteus penneri O8 (106)
45	Proteus penneri 064a, 64b, 64d (39)
46	Proteus penneri O66 (2)
47	Proteus penneri O69 (25)
48	Proteus penneri O71 (42)
49	Proteus penneri O72a, 72b (4)
50	Pseudomonas aeruginosa O2 (2a),2d,2f
51	Pseudomonas aeruginosa $\mathrm{O} 22 \mathrm{2a,2b}$
52	Pseudomonas aeruginosa O2 2a,2b,2e
53	Pseudomonas aeruginosa O2 2a,2d
54	Pseudomonas aeruginosa O2 Immuno 7
55	Pseudomonas aeruginosa O3 3a,3b
56	Pseudomonas aeruginosa O3 3a,3b,3c
57	Pseudomonas aeruginosa O3 3a,3d
58	Pseudomonas aeruginosa O4 4a,4c
59	Pseudomonas aeruginosa 066 a
60	Pseudomonas aeruginosa $066 \mathrm{a}, 6 \mathrm{c}$

61	Pseudomonas aeruginosa O6 Immuno 1
62	Pseudomonas aeruginosa 07 7a,7b,7c
63	Pseudomonas aeruginosa $077 \mathrm{7a}, 7 \mathrm{~b}, 7 \mathrm{~d}$
64	Pseudomonas aeruginosa $077 \mathrm{a}, 7 \mathrm{~d}$
65	Pseudomonas aeruginosa O10 10a,10b
66	Pseudomonas aeruginosa 010 10a,10c
67	Pseudomonas aeruginosa O11 11a,11b
68	Pseudomonas aeruginosa O12 12
69	Pseudomonas aeruginosa 013 13a,13c
70	Pseudomonas aeruginosa O14 14
71	Pseudomonas aeruginosa 01515
72	Proteus vulgaris O1 (18984)*
73	Proteus vulgaris O 4 (PrK 9/57)
74	Proteus vulgaris O12 (PrK 25/57)
75	Proteus vulgaris O 13 (8344)
76	Proteus vulgaris O15 (PrK 30/57)
77	Proteus vulgaris O17 (PrK 33/57)
78	Proteus vulgaris O19a (PrK 37/57)
79	Proteus vulgaris O 21 (PrK 39/57)*
80	Proteus vulgaris O22 (PrK 40/57)
81	Proteus vulgaris O25 (PrK 48/57)
82	Proteus vulgaris O 34 (4669)*
83	Proteus vulgaris O37a,b (PrK 63/57)
84	Proteus vulgaris O37a,c (PrK 72/57)
85	Proteus vulgaris O44 (PrK 67/57)
86	Proteus vulgaris O45 (4680)
87	Proteus vulgaris O53 (TG 276-10)
88	Proteus vulgaris O54a,54c (TG 103)
89	Proteus vulgaris O55 (TG 155)
90	Proteus vulgaris O65 (TG 251)
91	Proteus mirabilis O6 (PrK 14/57)
92	Proteus mirabilis O 11 (PrK 24/57)
93	Proteus mirabilis O 13 (PrK 26/57)
94	Proteus mirabilis 014a,14b (PrK 29/57)
95	Proteus mirabilis O16 (4652)
96	Proteus mirabilis 017 (PrK 32/57)
97	Proteus mirabilis O23a,b,d (PrK 42/57)
98	Proteus mirabilis O26 (PrK 49/57)
99	Proteus mirabilis O27 (PrK 50/57)
100	Proteus mirabilis O 28 (PrK 51/57)
101	Proteus mirabilis O29a (PrK 52/57)
102	Proteus mirabilis O40 (10703)
103	Proteus mirabilis 041 (PrK 67/57)
104	Proteus mirabilis O51 (19011)*
105	Proteus mirabilis O74 (10705, OF)
106	Proteus mirabilis O75 (10702, OC)
107	Proteus mirabilis 077 (3 B-m)
108	Proteus penneri O31a (26)
109	Proteus penneri O52 (15)
110	Proteus penneri O58 (12)
111	Proteus penneri O59 (9)
112	Proteus penneri O61 (21)
113	Proteus penneri O62 (41)
114	Proteus penneri O63 (22)
115	Proteus penneri O64a,b,c (27)
116	Proteus penneri O65 (34)
117	Proteus penneri 067 (8)
118	Proteus penneri O68 (63)
119	Proteus penneri O70 (60)
120	Proteus penneri O73a,b (103)
121	Proteus myxofaciens 060
122	Proteus O56 (genomospecies 4)
123	Providencia stuartii O4
124	Providencia stuartii 018
125	Providencia stuartii O20*
126	Providencia stuartii O43

127	Providencia stuartii O44
128	Providencia stuartii 047
129	Providencia stuartii O47, Core 9
130	Providencia stuartii O49, Core 1
131	Providencia stuartii O57
132	Providencia alcalifaciens O5
133	Providencia alcalifaciens O6*
134	Providencia alcalifaciens O19
135	Providencia alcalifaciens O19
136	Providencia alcalifaciens O19
137	Providencia alcalifaciens O21
138	Providencia alcalifaciens O23
139	Providencia alcalifaciens O27
140	Providencia alcalifaciens O29
141	Providencia alcalifaciens O30
142	Providencia alcalifaciens O32
143	Providencia alcalifaciens O36*
144	Providencia alcalifaciens O39
145	Providencia rustigianii 014
146	Providencia rustigianii 016
147	Providencia rustigianii O34
148	Yersinia pestis, KM260(11)- 0187
149	Yersinia pestis, KM260(11)- 0187
150	Yersinia pestis, KM260(11)- Δ rfe
151	Yersinia pestis, KM260(11)- Δ rfe
152	Yersinia pestis, 1146-25
153	Yersinia pestis 1146-25
154	Yersinia pestis, 1146-37
155	Yersinia pestis, 1146-37
156	Yersinia pestis, 0KM218-37
157	Yersinia pestis, KM218-37
158	Yersinia pestis, KM218-25
159	Yersinia pestis, KM218-25
160	Yersinia pestis, KM260(11)- pmmF
161	Yersinia pestis, KM260(11)- $\Delta \mathrm{pmrF}$
162	Yersinia pestis, KM260(11)- 0186
163	Yersinia pestis, KM260(11)- 0186
164	Yersinia pestis, KM260(11)- waaQ $^{\text {a }}$
165	Yersinia pestis, KM260(11)- ${ }^{\text {waaQ }}$
166	Yersinia pestis, KM260(11)- waaL $^{\text {a }}$
167	Yersinia pestis, KM260(11)-25
168	Yersinia pestis, KM260(11)-25
169	Yersinia pestis, KM260(11)-37
170	Yersinia pestis, KIMD1-37
171	Yersinia pestis, KIMD1-25
172	Yersinia pestis, 11M-25
173	Yersinia pestis, 11M-37
174	Proteus mirabilis O23a, 23b, 23c (CCUG 10701)
175	Proteus vulgaris O24 (PrK 47/57)
176	Yersinia pestis KM260(11)-6C
177	Yersinia pestis 260(11)-37C-186
178	Yersinia pestis 260(11)-37C-187
179	Yersinia pestis 260(11)-37C-416
180	Yersinia pestis 260(11)-37C-417
181	Yersinia pestis P-1680-25C
182	Yersinia pestis P-1680-37C
183	Yersinia pestis l-2377-25C
184	Yersinia pestis I-2377-37C
185	Francisella novicida OPS
186	Francisella tularensis OPS
187	Klebsiella O1 OPS
188	Klebsiella O2a OPS
189	Klebsiella O2ac OPS
190	Klebsiella O3 OPS
191	Klebsiella O4 OPS
192	Klebsiella O5 OPS

193	Klebsiella 08 OPS
194	Klebsiella 012 OPS
195	Shigella boydii type 1
196	Shigella boydii type 3
197	Shigella boydii type 5
198	Shigella boydii type 9
199	Shigella boydii type 11
200	Shigella boydii type 12
201	Shigella boydii type 15
202	Shigella boydii type 16
203	Shigella boydii type 17
204	Shigella boydii type 18
205	Escherichia coli O49
206	Escherichia coli O52
207	Escherichia coli O58
208	Escherichia coli O61
209	Escherichia coli O73
210	Escherichia coli O112ab
211	Escherichia coli 0118
212	Escherichia coli 0125
213	Escherichia coli 0151
214	Escherichia coli O168
215	Shigella dysenteriae type 2
216	Shigella dysenteriae type 4
217	Shigella dysenteriae type 5
218	Shigella dysenteriae type 6 SR-strain
219	Shigella dysenteriae type 7
220	Shigella dysenteriae type 8 (Russian)
221	Shigella dysenteriae type 9
222	Escherichia coli O111:B4 LPS
223	Escherichia coli O26:B6 LPS
224	Escherichia coli O55:B5 LPS
225	Escherichia coli O127:B8 LPS
226	Streptococcus pneumoniae type 1 (Danish type 1)
227	Streptococcus pneumoniae type 2 (Danish type 2)
228	Streptococcus pneumoniae type 3 (Danish type 3)
229	Streptococcus pneumoniae type 4 (Danish type 4)
230	Streptococcus pneumoniae type 5 (Danish type 5)
231	Streptococcus pneumoniae type 8 (Danish type 8)
232	Streptococcus pneumoniae type 9 (Danish type 9N)
233	Streptococcus pneumoniae type 12 (Danish type 12F)
234	Streptococcus pneumoniae type 14 (Danish type 14)
235	Streptococcus pneumoniae type 17 (Danish type 17F)
236	Streptococcus pneumoniae type 19 (Danish type 19F)
237	Streptococcus pneumoniae type 20 (Danish type 20)
238	Streptococcus pneumoniae type 22 (Danish type 22F)
239	Streptococcus pneumoniae type 23 (Danish type 23F)
240	Streptococcus pneumoniae type 26 (Danish type 6B)
241	Streptococcus pneumoniae type 34 (Danish type 10A)
242	Streptococcus pneumoniae type 43 (Danish type 11A)
243	Streptococcus pneumoniae type 51 (Danish type 7F)
244	Streptococcus pneumoniae type 54 (Danish type 15B)
245	Streptococcus pneumoniae type 56 (Danish type 18C)
246	Streptococcus pneumoniae type 57 (Danish type 19A)
247	Streptococcus pneumoniae type 68 (Danish type 9V)
248	Streptococcus pneumoniae type 70 (Danish type 33F)
249	Yersinia pestis KM218-6C
250	Yersinia pestis KM260(11)-yjhW-6C
251	Yersinia pestis KM260(11)-wabD/waaL
252	Yersinia pestis KM260(11)-wabC/waaL
253	Yersinia pseudotuberculosis 85pCad-37C
254	Yersinia pseudotuberculosis 85pCad-20C
255	Yersinia pseudotuberculosis 0:2a
256	Yersinia pseudotuberculosis 0:2a-dhmA
257	Yersinia pseudotuberculosis 0:2c
258	Yersinia pseudotuberculosis O:3

259	Yersinia pseudotuberculosis O:4b
260	Proteus vulgaris O2 (OX2)
261	Proteus mirabilis O3ab (S1959)
262	Proteus mirabilis O5 (PrK 12/57)
263	Proteus mirabilis O9 (PrK 18/57)
264	Proteus mirabilis O 11 (9B-m)
265	Proteus penneri O17 (16)
266	Proteus mirabilis O 18 (PrK 34/57)
267	Proteus mirabilis O20 (PrK 38/57)
268	Proteus penneri O31ab (28)
269	Proteus mirabilis O33 (D52)
270	Proteus mirabilis O43 (PrK 69/57)
271	Proteus vulgaris O47 (PrK 73/57)
272	Proteus mirabilis 049 (PrK 75/57)
273	Proteus mirabilis O54ab (OE)
274	Proteus penneri O73ac (75)
275	Proteus vulgaris O76 (HSC438)
276	Shigella flexneri type 1a
277	Shigella flexneri type 1b
278	Shigella flexneri type 2a
279	Shigella flexneri type 2b
280	Shigella flexneri type 3a
281	Shigella flexneri type 3b
282	Shigella flexneri type 4a
283	Shigella flexneri type 4b
284	Shigella flexneri type 5b
285	Shigella flexneri type 6a
286	Shigella flexneri type 6
287	Shigella flexneri type X
288	Shigella dysenteriae type 1
289	Shigella boydii type 6
290	Shigella boydii type 7
291	Shigella boydii type 8
292	Shigella boydii type 13
293	Shigella boydii type 14
294	Escherichia coli 071
295	Escherichia coli 085
296	Escherichia coli O99
297	Escherichia coli O145
298	Escherichia coli O107
299	Salmonella enterica O17
300	Salmonella enterica O28
301	Salmonella enterica O47
302	Salmonella enterica 055
303	Escherichia coli K92
304	Escherichia coli K5
305	Escherichia coli K13
306	Neisseria meningitidis Group C
307	Davanat
308	Laminarin
309	Yeast Mannan
310	Escherichia coli O86
311	Galactomannan DAVANAT (160102) Pro-Pharmacenti
312	Yeast Mannan Sigma M-3640
313	1-2 Mannan Acetobacter methanolicus MB135

Modified from (15).

Supplemental Table 2. Gene usage and mutations of anti-TS14 and anti-TS3 monoclonal antibodies.

Name	Isotype	Number of mutations, heavy chain	Number of mutations, light chain	Number of mutations in CDR, heavy chain	Number of mutations in CDR, light chain	CDRH3 length	VH	DH	JH	VL K	JL
14.2	lgG1	17	9	8	3	11	$1-58$	$1-1$	1	$1-117$	2
14.6	lgM	5	0	2	n / a	13	$1-64$	$2-1$	1	$9-124$	1
14.10	IgG1	11	0	8	n / a	12	$1-58$	$1-1$	1	$1-117$	2
14.13	IgG2b	10	5	5	3	5	$1-22$	$-0-$	2	$1-117$	1
14.15	lgG2c	11	4	5	0	11	$1-58$	$2-2$	1	$1-117$	1
14.17	IgG2b	13	9	5	3	5	$1-22$	n / a	2	$1-117$	1
14.18	IgG2b	15	12	7	5	5	$1-22$	n / a	2	$1-117$	1
14.20	lgG2b	18	8	7	4	5	$1-22$	n / a	2	$1-117$	1
14.21	lgG2b	12	9	5	4	5	$1-64$	n / a	2	$1-117$	1
14.22	lgG2b	22	17	10	7	5	$1-22$	n / a	2	$1-117$	1

3.1	lgG1	14	10	7	4	11	6-3	1-2	4	1-135	5
3.2	$\lg \mathrm{G} 3$	11	2	7	2	11	6-3	1-2	4	1-135	5
3.3	lgG3	11	2	6	1	11	6-3	2-2	4	1-135	5
3.4	lgG2c	16	8	6	1	11	6-3	1-2	4	1-135	5
3.5	lgG3	11	n.d.	8	n.d.	11	1-78	1-3	3	n.d.	n.d.
3.7	lgG2c	14	7	7	2	11	6-3	1-2	4	1-135	5
3.8	lgG3	11	5	7	3	11	6-3	1-2	4	1-135	5
3.9	lgG2c	16	6	6	1	11	6-3	1-2	4	3-12	2
3.10	lgG1	5	3	2	0	17	5-6	1-1	1	1-117	1
3.11	lgG2c	16	0	6	n/a	13	14-3	2-1	2	1-133	5
3.12	lgG2c	16	0	6	n/a	13	14-3	2-1	2	1-117	5
3.13	lgG1	11	4	4	0	15	1-53	1-1	3	1-110	2
3.14	lgG2b	12	n.d.	5	n.d.	13	14-3	1-1	2	n.d.	n.d.

n.d. - not determined due to difficulties in sequencing $\lg \lambda$ genes.

Supplemental Table 3. Characterization of anti-TS3 monoclonal antibodies isolated from Q β-TS3-immunized mice.

1:1 binding kinetic model					
Name	Isotype	Avidity, nM, BSA-TS3	$\underset{\substack{\mathrm{k}_{\mathrm{on}}, 10^{3} \mathrm{M}^{-1 *} \mathrm{~s}^{-1}}}{\text {. }}$	$\begin{gathered} \mathrm{k}_{\text {off, }} \\ 10^{-6} \mathrm{~s}^{-1} \end{gathered}$	
3.1	IgG1	<0.1	10	<0.1	
3.2	lgG3	<0.1	0.7	<0.1	
3.3	IgG3	0.4	11	5	
3.4	IgG2c	<0.1	1.8	<0.1	
3.7	lgG2c	1.9	0.14	0.27	
3.8	IgG3	<0.1	180	2.6	
3.9	lgG2c	12	2.7	33	
3.10	IgG1	3600	0.08	280	
3.11	lgG2c	9	96	870	
Bivalent analyte kinetic model					
Name	Isotype	$\begin{aligned} & \mathrm{k}_{\text {on }} 1,10^{4} \\ & \mathrm{M}^{-1 *} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \mathrm{k}_{\text {off }} 1, \\ 10^{-3} \mathrm{~s}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{on} 2} 2, \\ 10^{-6} \mathrm{RU}^{-1} \end{gathered}$	$\begin{gathered} \mathrm{k}_{\text {off }} 2, \\ 10^{-4} \mathrm{~s}^{-1} \end{gathered}$
3.5	IgG3	0.8	14	3.1	5.4
3.12	lgG2c	2.3	1.8	2000	300
3.13	IgG1	0.2	3.7	37	4.8
3.14	IgG2b	3.6	6.1	14	3.8

Biacore T200 Evaluation software was used to estimate kinetic and affinity constants

Supplemental Table 4. Crystallographic data collection and refinement statistics for Fab14.22 unliganded and in complex with TS14.

	Fab14.22-tetrasaccharide complex	Fab14.22
Data collection		
Beamline	APS 23 ID-B	APS 23 ID-D
Detector	MARMosaic300	Pilatus6M
Wavelength (\AA)	1.03317	1.03321
Space group	C2	P2 ${ }_{1}$
Unit cell (a, b, and $c ; ~ A ̊)$	125.27, 74.74, 120.30	120.61, 75.99, 122.94
(α, β and $\gamma ;{ }^{\circ}$)	90.0, 100.6, 90.0	90.0, 100.6, 90.0
Resolution range ${ }^{(} \bar{\chi}$)	47.19-1.75	49.74-2.21
No. of total reflections	288,284 (14,607)	393,318 (16,194)
No. of unique reflections	106,772 (5,410)	109,255 (5,224)
Redundancy	2.7 (2.7)	3.6 (3.1)
Completeness (\%)	97.0 (98.3)	99.4 (95.3)
$R_{\text {sym }}{ }^{\text {a }}$	6.5 (63.9)	13.3 (68.0)
$\mathrm{R}_{\text {pim }}{ }^{\text {b }}$	4.3 (44.9)	8.1 (43.7)
<1>\|<o>	11.4 (1.4)	6.1 (1.6)
$\mathrm{CC}_{1 / 2}{ }^{\text {c }}$	92.7 (68.2)	90.2 (67.2)
Solvent content (\%)	56.8	57.7
Refinement		
Reflections used for refinement $\left(R_{\text {tree }}\right)$	106,745	109,105
$R_{\text {cryst }}{ }^{\text {a }}$ (\%)	16.9	20.4
$R_{\text {free }}{ }^{e}$ (\%)	20.3	23.8
Model components (asymmetric unit)		
Fabs	2	4
TS14	2	-
Waters	931	761
PO_{4} ions	30	-
SO_{4} ions	-	9
Glycerol	8	4
B-values (\AA^{2})		
Wilson B	22.3	37.5
Overall	31.2	44.8
Protein	29.5	44.6
Glycan	28.0	-
Root mean square deviation from ideal values		
Bond lengths (\AA)	0.015	0.002
Bond angles (${ }^{\circ}$)	1.4	0.6
Ramachandran values		
Most favored regions (\%)	98.2	97.1
Additional allowed regions (\%)	1.6	2.8
Disallowed regions (\%)	0.2	0.1

* Values in parentheses correspond to the highest resolution shells
${ }^{\text {a }} \mathrm{R}_{\text {sym }}=\Sigma_{\mathrm{hkl}} \Sigma_{\mathrm{j}=1, \mathrm{~N}}\left|\left\langle\mathrm{I}_{\mathrm{hk}}\right\rangle \quad-I_{\mathrm{hkj}}\right| / \Sigma_{\mathrm{hkl}} \Sigma_{\mathrm{j}=1, \mathrm{~N}}\left|\|_{\mathrm{hkj}}\right|$, where the outer sum (hkl) is taken over the unique reflections
${ }^{b} R_{\text {pim }}=\Sigma_{\text {hk }[1 /(N-1)]^{1 / 2}} \Sigma_{i=1, N} \mid l_{\text {hki }}-\left\langle l_{\text {hkl }}>\right| / \Sigma_{\text {hk }} \Sigma_{\mathrm{i}=1, \mathrm{~N}} \mid \|_{\text {hkil }}$
${ }^{\circ} \mathrm{CC}_{1 / 2}=$ Pearson Correlation Coefficient between two random half datasets
${ }^{d} R_{\text {cryst }}=\Sigma_{h k \mid}| | F_{o, h k \mid}|-k| F_{c, h k}| | / \Sigma_{h k \mid}\left|F_{o, h k}\right|$, where $\left|F_{o, h k \mid}\right|$ and $\left|F_{c, h k \mid}\right|$ are the observed and calculated structure factor amplitudes, respectively
${ }^{\mathrm{e}} \mathrm{R}_{\text {free }}$, as for $\mathrm{R}_{\text {cryst, }}$, but for a set of reflections (5% of total) omitted from refinement

Supplemental Table 5. Interactions between TS14 and Fab14.22 in the crystal structure.

	Polar contacts	Hydrophobic contacts	
Heavy chain	CDR1	Tyr33	Glu31, Tyr32
	CDR2		His52
	CDR1	Asp28, Tyr32, Tyr33, Glu34	Tyr30
	FR2	Tyr49	
	CDR2	Arg50, Lys53	
	FR3	Gly91	

Protein residues numbered according to Kabat numbering system.

Supplemental Table 6. Sequences of the peptides used in cell assays. $Q \beta$ coat protein residues are numbered after omitting initiator Met cleaved during protein processing. Bold - lysine residue modified with TS14 in glycopeptides.

Peptide name	Peptide sequence	Qß CP residues	Assays used
p13	LGNIGKDGKQT	$8-18$	Glycopeptides for tetramer staining and ICS
p13*	TLGNIGKDGKQTL	$7-19$	Glycopeptides for mouse immunization
p16	IGKDGKQTLVL	$11-21$	Glycopeptides for tetramer staining and ICS
p16*	NIGKDGKQTLVLN	$10-22$	Glycopeptides for mouse immunization
p30-44	NGVASLSQAGAVPAL	$30-44$	ICS staining: peptide pool 1
p31-45	GVASLSQAGAVPALE	$31-45$	ICS staining: peptide pool 1
p32-46	VASLSQAGAVPALEK	$32-46$	ICS staining: peptide pool 1
p44-58	LEKRVTVSVSQPSRN	$44-58$	ICS staining: peptide pool 2
p45-59	EKRVTVSVSQPSRNR	$45-59$	ICS staining: peptide pool 2
p46-60	KRVTVSVSQPSRNRK	$46-60$	ICS staining: peptide pool 2
p107-121	FVRTELAALLASPLL	$107-121$	ICS staining: peptide pool 3
p108-122	VRTELAALLASPLLI	$108-122$	ICS staining: peptide pool 3
p109-123	RTELAALLASPLLID	$109-123$	ICS staining: peptide pool 3

Compound synthesis

Glycan synthesis

Materials and General Methods. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Varian Unity 500 MHz or Varian Unity 300 MHz instruments. Mass spectrometric data were obtained on JEOL SX 102 A spectrometer or Agilent 1100 series spectrometer. All solvents were dried using activated alumina columns. Chemicals were obtained from Sigma and Aldrich and were used as received unless otherwise noted.

 NBS, 85% yield. k : i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DCM}, \mathrm{CCl}_{3} \mathrm{CN}$; DCM, TMSOTf, $3 \AA$ molecular sieves, 89% yield. I: DMF, $\mathrm{NaN}_{3}, 97 \%$ yield. m: THF, MeOH, AcCI, 78% yield. n: DCM, NIS, TMSOTf, $4 \AA$ Aolecular sieves, 57% yield. o: toluene,
 $\mathrm{NaOMe}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 64 \%$ yield.

Scheme 1. Synthesis of TS-3-N N_{3} Antigen

Preparation of compound 2: To a solution of compound 1 ($1.5 \mathrm{~g}, 2.6 \mathrm{mmol}$) in a mixture of DCM $(20 \mathrm{~mL})$ and methanol (15 mL) was added TsOH $\mathrm{H}_{2} \mathrm{O}(49 \mathrm{mg}, 0.26 \mathrm{mmol}$, 0.1 eq). The reaction was stirred at room temperature for 5 h . The solvent was then removed under vacuum. The crude mixture was subsequently dissolved in dry DMF (20 mL) and stirred with benzaldehyde dimethyl acetal (1 mL) at $60^{\circ} \mathrm{C}$. After 30 min , the
reaction was stopped by addition of triethyl amine (2 mL). The solvent was removed by evaporation under vacuum. The resulting mixture was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right)$, using 50% ethyl acetate in hexanes as eluent, affording the desired product as a clear oil ($1.05 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (alpha anomer, 500 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.02-7.30(\mathrm{~m}, 15 \mathrm{H}), 6.16(\mathrm{t}, J=10.0 \mathrm{H}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, anomeric), $5.58(\mathrm{~s}, 1 \mathrm{H}), 5.32$ (dd, $J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.90 (dd, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$); 166.15, 165.84, 136.93, 133.61, 133.11, 129.96, 129.81, 129.77, 128.84, 128.49, 128.33, 128.23, 128.20, 126.21, 101.63, 91.19, 79.43, 72.86, 69.49, 68.96, 62.59. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{8}$ $[\mathrm{M}+\mathrm{H}]^{+}: 477.1543$; found: 477.1519.

Compound 4: To a solution of compound $2(270 \mathrm{mg}, 0.567 \mathrm{mmol})$ in DCM (15 mL) was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(500 \mathrm{mg})$, and $\mathrm{CCl}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The mixture was stirred at room for 5 h then solids were removed by filtration, and the filtrate was conducted under vacuum. The concentrated mixture was subjected to silica gel column chromatography using 25 \% EtOAc in hexanes, affording 190 mg (54% yield) of activated donor as a clear oil, which was then mixed with acceptor 3 ($179.3 \mathrm{mg}, 0.337 \mathrm{mmol}$) in DCM (6 mL). The reaction mixture was stirred at ambient temperature for 1 h , followed by addition of TMSOTf $(10 \mu \mathrm{~L})$. The mixture was allowed to stir for 5 h before $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ was added. Silica gel column chromatography was used for purification of products and 75 \% EtOAc in hexanes was used as eluent, affording 180 mg (60% yield) of the disaccharide as a clear oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right)$: $\delta=8.02-7.25(\mathrm{~m}, 30 \mathrm{H}), 5.73(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{dd}, \mathrm{J}$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, $J=$ 12.00, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (dd, $J=12.0,4.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (t, $J=9.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (dd, $J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (dd, $J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=11.0,4.50 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 165.72, 165.41, 165.23, 165.18, 164.92, 136.55, 133.38, 133.35, 133.29, 133.26, 133.17, 133.07, 129.94, 129.84, 129.80, 129.77, 129.68, 129.59, 129.33, 129.25, 129.02, 128.48, 128.45, 128.34, 128.25, 128.16, 128.13, 126.05, $117.75,101.90,101.21,99.36,78.23,73.30,72.90,72.45,72.23,72.04,71.93,71.72$, 69.94, 67.63, 66.39, 62.32. HRMS (ESI) calcd for $\mathrm{C}_{57} \mathrm{H}_{54} \mathrm{NO}_{16}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 1008.3443; found: 1008.3639.

Compound 5: To a solution of $4(180 \mathrm{mg}, 0.182 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ and DCM $(20 \mathrm{~mL})$ was added a catalytic amount of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~g})$. The mixture was stirred at room temperature for 4 h , and the mixture was concentrated under vacuum. The residue was dissolved in DCM $(75 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude mixture was purified by column chromatography using 50 \% EtOAc in toluene as eluent, affording 5 as colorless oil ($130 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=8.02-759$ and
7.54-7.25 (2m, 25 H$), 5.71(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (dd, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, $J=12.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, $J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (dd, $J=13.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=12.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$). HRMS (ESI) calcd for $\mathrm{C}_{50} \mathrm{H}_{47} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}]^{+}$: 903.2879; found: 903.2848.

Compound 6: To a solution of $5(100 \mathrm{mg}, 0.111 \mathrm{mmol})$ in DCM $(16 \mathrm{~mL})$ was added (diacetoxy)iodobenzene ($89.25 \mathrm{mg}, 0.277 \mathrm{mmol}$), TEMPO ($3.5 \mathrm{mg}, 0.022 \mathrm{mmol}$), and water (4 mL). The mixture was stirred vigorously overnight, and TLC showed that the starting material was totally consumed (HRMS (ESI) for calcd acid: $\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{NO}_{17}\left[\mathrm{M}+\mathrm{NH}_{4}\right]$: 934.2922, found: 934.2992). A freshly prepared solution of diazomethane in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added. The mixture was stirred for 30 min , and acetic acid $(0.5 \mathrm{~mL})$ was added to react with remaining diazomethane. After removal of solvent, the crude product was dissolved in DCM (10 mL), followed by addition of triethyl amine (1 mL), $\mathrm{Ac}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and DMAP (0.05 g). The reaction mixture was stirred at room temperature for 3 h and then quenched with methanol (0.2 mL). After dilution with DCM $(20 \mathrm{~mL})$, the mixture was washed with 10% aqueous $\mathrm{HCl}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ sequentially. The organic layer was concentrated and the crude product was purified by silica gel column chromatography using 40 \% EtOAc in hexane as eluent, giving a clear oil ($84 \mathrm{mg}, 82$ \% overall yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.97-7.19$ (m, 25 H), $5.75(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{ddd}, J=16.5,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (d, J=7.5 Hz, 1 H), $4.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.25 (dd, $J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=13.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36 (s, 3 H), 1.84 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 164.34, 161.25, 160.89, $160.73,160.47,160.38,159.97,128.67,128.58,128.54,128.42,128.35,128.31,125.03$, 125.00, 124.95, 124.94, 124.85, 124.72, 124.57, 123.81, 123.63, 123.53, 112.84, 96.23, 94.55, 68.66, 68.15, 68.01, 67.47, 67.39, 66.89, 65.11, 64.48, 57.51, 47.77, 17.75. HRMS (ESI) calcd for $\mathrm{C}_{53} \mathrm{H}_{52} \mathrm{NO}_{18}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 990.3184; found: 990.3118.

Compound 7: To a solution of compound $6(105 \mathrm{mg}, 0.11 \mathrm{mmol})$ in a mixture of toluene (25 mL) and absolute ethanol (10 mL) was added Wilkinson's catalyst (chlorotris(triphenyl phosphine)rhodium(I)) ($40 \mathrm{mg}, 0.043 \mathrm{mmol}$). The reaction mixture was refluxed for 5 h , and the solvent was removed by evaporation under vacuum. The crude mixture was dissolved in THF (9 mL) and water (1 mL), followed by addition of NIS (0.15 mmol). The mixture was stirred for 30 min , the solvent was removed under vacuum, and the residue was subjected to silica gel column chromatography using 25% EtOAc in
hexane affording the desired product as a white solid ($84 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=8.03-7.12(\mathrm{~m}, 25 \mathrm{H}), 6.14(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.36 (m, 2 H), 4.23 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (s, 3 H), 1.84 (s, 3 $\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 163.97, 160.94, 160.72, 160.61, 160.35, 159.89, 159.61, 128.23, 128.16, 128.11, 127.96, 127.85, 124.74, 124.59, 124.50, 124.47, 124.46, 123.72, 123.36, 123.19, 123.15, 122.89, 95.83, 84.97, 67.72, 67.42, 67.33, 67.05, 66.57, 65.20, 64.12, 63.12, 56.88, 47.37. 17.75. HRMS (ESI) calcd for $\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{NO}_{18}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 950.2871; found: 950.2707.

Compound 9: Compound 8 (1.94 g, 4.41 mmol) was dissolved in a mixture of methanol (20 mL), and THF (20 mL). To this mixture was added a solution of NaOMe in methanol ($1 \mathrm{M}, 1 \mathrm{~mL}$). The reaction mixture was stirred for 3 h before $\mathrm{AcOH}(1 \mathrm{~mL})$ was added. The neutralized solution was treated with amberlite (5 g), and stirred for 30 min . After filtration, the filtrate was concentrated under reduced pressure. The resulting mixture was dissolved in dry DMF (20 mL), followed by addition of benzaldehyde dimethyl acetal $(2 \mathrm{~mL})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g}, 0.8 \mathrm{mmol})$. The reaction mixture was warmed to $70^{\circ} \mathrm{C}$. After 3 h , TLC showed that the starting material was consumed completely, and $\mathrm{Et}_{3} \mathrm{~N}$ (1 mL) was then added. After solvent was removed under vacuum, the mixture was subjected to silica gel column chromatography using 50% EtOAc in hexanes, affording a white solid ($1.33 \mathrm{~g}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.53-7.26(\mathrm{~m}, 10 \mathrm{H}), 5.61$ (d, J=5.5 Hz, 1 H), $5.56(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, \mathrm{J}=8.5,1 \mathrm{H}), 2.85(\mathrm{brs}, 1 \mathrm{H}), 2.60(\mathrm{brs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 136.92$, 133.51, 132.18, 129.33, 129.20, 128.36, 127.92, 126.33, 102.06, 90.92, 80.97, 72.52, 72.27, 68.66, 63.94. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 383.0923$; found: 383.1056.

Compound 10: To a solution of compound $9(1 \mathrm{~g}, 2.8 \mathrm{mmol})$ in pyridine (40 mL) was added drop wise benzoyl chloride ($0.39 \mathrm{~g}, 0.32 \mathrm{~mL}, 2.8 \mathrm{mmol}$) at $-50^{\circ} \mathrm{C}$. After 30 min , the reaction was warmed to room temperature and stirred for 1 h . After addition of methanol (0.5 mL), the solvent was evaporated under reduced pressure. The crude mixture was purified by column chromatography (silica gel) using 25\% EtOAc in hexanes, affording a white solid ($0.97 \mathrm{~g}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=8.14-8.13$ and $7.63-7.26$ ($2 \mathrm{~m}, 15 \mathrm{H}$), 5.99 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.60(\mathrm{~s}, 1 \mathrm{H}), 5.33$ (dd, $J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (dt, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.33(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, \mathrm{J}=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, \mathrm{J}=9.50 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 165.86, 136.92, 133.54, 132.91, 132.35, 130.04, 129.39, 129.34, 129.10, 128.53, 128.40, 127.81, 126.36, 102.12, 86.48, 81.24, 73.68, 69.52, 68.60, 63.21. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 465.1366$, found: 465.1345.

Compound 11: To a solution of 10 ($500 \mathrm{mg}, 1.01 \mathrm{mmol}$) in DCM (20 mL) and pyridine $(1 \mathrm{~mL})$ was added chloroacetic anhydride ($183 \mathrm{mg}, 1.11 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and then warmed to room temperature. After another 2 h , the reaction mixture was diluted with DCM (30 mL) and washed with 5% aqueous $\mathrm{HCl}(200 \mathrm{~mL} \times 2)$. The organic phase was concentrated and then purified by silica gel chromatography using 40% EtOAc in hexanes, affording a white solid ($502 \mathrm{mg}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=8.09-7.26(\mathrm{~m}, 15 \mathrm{H}), 6.065(\mathrm{~d}, \mathrm{~J}=5.50 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.83(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{td}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=11.0,5.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, ~ J=15.29 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, \mathrm{J}=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 166.46, 165.49, 136.70, 133.82, 132.48, 132.39, 130.10, 129.26, 129.17, 128.68, 128.33, 127.98, 126.23, 101.77, 86.41, 78.71, 71.95, 71.21, 68.51, 63.61, 40.54. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClNaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 563.0901$, found: 563.0909.

Compound 13: To a solution of $12(960 \mathrm{mg}, 2.04 \mathrm{mmol})$ in DCM $(30 \mathrm{~mL})$ and pyridine $(7 \mathrm{~mL})$ was added benzoyl chloride ($342 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $-78{ }^{\circ} \mathrm{C}$ drop wise. The reaction mixture was allowed to stirr for 1 h at that temperature and then warmed to room temperature. Acetic anhydride (2 mL) was added. After another 5 h , the reaction mixture was diluted with DCM (30 mL) and washed with 5% aqueous $\mathrm{HCl}(200 \mathrm{~mL} \times 2)$ and saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic phase was concentrated and purified by silica gel chromatography using 20\% EtOAc in hexane, affording a clear oil ($830 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl 3 , ppm): $\delta=8.11-7.14(\mathrm{~m}, 20 \mathrm{H}), 5.74(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{t}, \mathrm{J}$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (dd, $J=12.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 169.43,166.12,165.74,165.04,133.44,133.36,133.34,133.19,131.65$, $129.88,129.86,129.83,129.62,129.17,128.89,128.75,128.51,128.45,128.43,128.34$, 86.07, 76.12, 74.39, 70.33, 68.58, 62.84, 20.55. HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 627.1683, found: 627.1720.

Compound 14: To a solution of compound $13(800 \mathrm{mg}, 1.28 \mathrm{mmol})$ in a mixture of acetone $(40 \mathrm{~mL})$ and water (8 mL) was added NBS ($450 \mathrm{mg}, 2.56 \mathrm{mmol}$) in small portions. The reaction mixture was stirred vigorously for 2 h . A saturated solution of sodium sulfite $(100 \mathrm{~mL})$ was added to the mixture, and the mixture was stirred for another 1 h . After dilution with DCM (200 mL), the organic phase was separated, and the aqueous phase was extracted with DCM ($100 \mathrm{~mL} \times 2$). The combined organic phase was concentrated under vacuum. The resulting crude mixture was purified by flash column chromatography
(silica gel) using 25\% EtOAc in hexanes affording a white solid ($581 \mathrm{mg}, 85 \%$ yield, alpha/beta $=8 / 1$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$, alpha isomer): $\delta=8.08$ (m, 15 H), $6.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=3.0,1 \mathrm{H}), 5.49(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=10.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.58 (dd, $J=12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (td, $J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (dd, J = 12.0, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 169.65, 166.50, 166.01, 165.90, 133.42, 133.32, 133.25, 129.91, 129.82, 129.78, 129.75, 129.62, 129.17, 128.97, 128.46, 128.43, 90.38, 72.28, 70.52, 68.72, 67.47, 62.61, 20.57. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 552.1864$, found: 552.1849.

Compound 15: Compound 14 ($500 \mathrm{mg}, 0.936 \mathrm{mmol}$) was dissolved in DCM (30 mL). Dry potassium carbonate (1.2 g) was added, followed by addition of excess trichloroacetonitrile ($592 \mu \mathrm{~L}, 5.82 \mathrm{mmol}$). The reaction was stirred for 8 h at room temperature. Solids were removed by filtration, and the filtrate was concentrated under vacuum. The resulting donor was then mixed with 2-bromoethanol ($125 \mathrm{mg}, 1 \mathrm{mmol}$) and 4 Å molecular sieves (600 mg). The reaction mixture was stirred for 1 h in DCM (7 mL , then TMSOTf ($16 \mu \mathrm{~L}, 0.0845 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for another 12 h and then quenched with triethyl amine (0.5 mL). After removal of molecular sieves by filtration, the filtrate was concentrated, and the product was purified by silica gel column chromatography (EtOAc/hexane: 1/4), affording compound 15 as a clear oil ($533 \mathrm{mg}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=8.10-7.35(\mathrm{~m}, 15 \mathrm{H}), 5.72$ (t, J = 9.0 Hz, 1 H), 5.478 (dd, J = 9.0, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (t, J = $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.88 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$ (dd, $J=12.25,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (dd, $J=12.25,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}$, 1 H), 4.05 (ddd, $J=9.5,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (td, $J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (m, 2 H), 1.94 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 169.45, 166.22, 165.84, 165.16, 133.48, 133.36, 165.16, 133.48, 133.36, 133.28, 129.83, 129.80, 129.53, 129.20, 128.73, 128.55, 128.48, 128.36, 101.34, 72.98, 72.17, 71.53, 69.82, 68.75, 62.62, 29.58, 20.57. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{BrNO} 10\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 658.1282, found: 658.1296.

Compound 16: To a solution of compound 15 ($533 \mathrm{mg}, 0.833 \mathrm{mmol}$) in DMF (20 mL) was added NaN_{3} ($542 \mathrm{mg}, 8.33 \mathrm{mmol}$). The reaction was warmed to $60{ }^{\circ} \mathrm{C}$ and stirred overnight. After removal of solids via filtration, the filtrate was concentrated under vacuum. The crude product was purified by silica gel column chromatography using 40% EtOAc in hexanes, giving a clear oil ($487 \mathrm{mg}, 97 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.11-$ $7.27(\mathrm{~m}, 15 \mathrm{H}), 5.73(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (dd, $J=12.0,5.0$ Hz, 1 H), 4.04 (m, 2 H), 3.73 (ddd, $J=11.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, $J=12.0,8.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.29 (ddd, $J=13.5,5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm): 169.36, 166.17, 165.81, 165.07, 133.41, 133.31, 133.19, 129.82, 129.78, 129.62, 129.29, 128.80, 128.51, 128.44, 128.31, 101.15, 73.09, 72.21, 71.59, 68.79, 68.38, 62.63, 50.60, 20.53. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N} 4 \mathrm{O} 10\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 621.2191$, found: 621.2242.

Compound 17: To a solution of compound $16(487 \mathrm{mg}, 0.808 \mathrm{mmol})$ in a mixture of THF (20 mL) and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{AcCl}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 10 h , followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$. After removal of solvents, the residue was subjected to silica gel column chromatography using 50\% EtOAc in hexanes, affording a clear oil ($354 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=8.09-7.26(\mathrm{~m}, 15 \mathrm{H}), 5.52(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (dd, $J=12.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.035$ (ddd, $J=10.5,5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.866 (ddd, $J=10.0,4.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.73 (ddd, $J=11.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, $J=11.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (td, $J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 167.26,166.92,165.28$, 133.50, 133.35, 133.18, 129.96, 129.84, 129.75, 129.60, 129.37, 128.90, 128.48, 128.41, 128.32, 101.10, 76.47, 74.61, 71.35, 69.50, 68.36, 63.34, 60.41, 50.63. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 562.1820$, found: 562.1807.

Compound 18: A mixture of compound 11 ($85 \mathrm{mg}, 0.175 \mathrm{mmol}$), compound 17 (115 $\mathrm{mg}, 0.225 \mathrm{mmol}), 3 \AA$ molecular sieves (300 mg) and DCM (6 mL) was stirred at room temperature for 1 h and then cooled to $-40{ }^{\circ} \mathrm{C}$. NIS ($42.2 \mathrm{mg}, 0.188 \mathrm{mmol}$) was subsequently added, followed by addition of TMSOTf ($4 \mu \mathrm{~L}, 0.0157 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature. After 1 h , the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$. Filtration and concentration gave the crude product, which was purified by silica gel column chromatography using 25\% EtOAcs in hexane to give the desired product as a white solid ($98 \mathrm{mg}, 57 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta=8.05-$ 7.31 (m, 25 H), $5.70(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28$ (dd, $J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.5,1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.51 (dd, $J=12.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (dd, $J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.107$ (t, J = $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (ddd, $J=8.5,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (m, 1 H), 3.63 (ddd, $J=10.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, $J=10.5,5.0,1 \mathrm{H}$), 3.53 (t, J = $9.5 \mathrm{~Hz}, 1$ H), 3.34 (ddd, $J=10.5,7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 165.43, 164.70, 164.17, 164.09, 163.98, 135.37, 132.62, 132.39, 132.30, 132.15, 128.97, 128.84, 128.78, 128.74, 128.64, 128.50, 128.26, 128.20, 127.63, 127.60, 127.46, 127.29, 127.21, 125.19, 125.06, 100.68, 100.32, 99.74, 76.60, 72.30, 72.18, 71.95, 71.36, 70.55, 67.35, 66.54, 65.17, 61.07, 49.52, 39.35, 28.68. HRMS (ESI) calcd for $\mathrm{C}_{51} \mathrm{H}_{47} \mathrm{CIN}_{3} \mathrm{O}_{16}[\mathrm{M}+\mathrm{H}]^{+}: 992.2645$, found: 992.2471.

Compound 19: To a solution of compound 18 ($90 \mathrm{mg}, 0.091 \mathrm{mmol}$) in a mixture of
toluene (16 mL) and ethanol (16 ml) was added DABCO ($1.32 \mathrm{~g}, 1.32 \mathrm{mmol}, 14.5 \mathrm{eq}$). The reaction mixture was warmed to $60{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction mixture was washed with 5% aqueous $\mathrm{HCl}(500 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvents, the crude mixture was subjected to silica gel column chromatography using 50% EtOAc in hexanes, affording a white solid ($69 \mathrm{mg}, 83$ \%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=8.09-7.92$ and $7.64-7.26(\mathrm{~m}, 25 \mathrm{H}), 5.69(\mathrm{t}, \mathrm{J}=9.5$ Hz, 1 H), 5.41 (dd, J = 9.5, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.23 (s, 1 H), 5.18 (dd, J = 9.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (m, 1 H), $3.89(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{td}, J=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (ddd, $J=10.5,8.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, J = 10.5, 5.0, 1H), 3.37 (t, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (ddd, J = 10.5, 7.5, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (ddd, $J=13.0,5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (ddd, $J=14.0,10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (t, J = $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (brs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 165.90, 165.51, 165.22, 165.12, 136.66, 133.43, 133.34, 133.28, 133.15, 129.92, 129.87, 129.79, $129.78,129.65,129.58,129.31,128.88,128.52,128.50,128.40,128.29,126.19,101.65$, 100.81, 80.32, 74.62, 73.13, 73.03, 72.36, 71.53, 68.37, 67.60, 66.04, 62.37, 50.53. HRMS (ESI) calcd for $\mathrm{C}_{49} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{15}[\mathrm{M}+\mathrm{NH} 4]^{+}: 933.3194$, found: 933.3019.

Compound 20: A mixture of compound 7 ($55 \mathrm{mg}, 0.059 \mathrm{mmol}$), dry potassium carbonate (300 mg), DCM (10 mL) and trichloroacetonitrile (3 mL) was stirred at room temperature for 5 h . The solid was removed by filtration through a celite pad. After the filtrate was concentrated, the product was purified by flash chromatography using silica gel column, with 50% of EtOAc in hexane as eluent, to give a white solid. This solid was mixed with compound 19 ($40 \mathrm{mg}, 0.044 \mathrm{mmol}$), $4 \AA$ molecular sieves (300 mg) and DCM (6 mL). After stirring at room temperature for 1 h , TMSOTf $(6 \mu \mathrm{~L})$ was added. The reaction was allowed to stirr for another 7 h , followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$. After filtration and concentration, the crude product was purified by silica gel column chromatography using 50% EtOAc in hexane as eluent, affording tetrasaccharide 20 as a white solid (62 $\mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=7.96-7.07(\mathrm{~m}, 50 \mathrm{H}), 5.59(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44$ (dt, $J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.32 (dd, $J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=9.5,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21-5.12(\mathrm{~m}, 3 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (ddd, $J=$ $11.0,6.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1$ H), 3.51 (dd, J = 12.0, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (m, 1 H), 3.32 (m, 1 H), 3.28 (s, 3 H), 3.17 (ddd, $J=13.5,5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (ddd, $J=9.5,6.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.85 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 165.08,161.91,161.76,161.50,161.23$, 161.01, 160.79, 160.62, 160.14, 132.65, 129.42, 129.35, 129.27, 129.22, 129.16, 129.02, 128.93, 128.61, 125.87, 125.81, 125.64, 125.59, 125.47, 125.33, 124.96, 124.61, 124.47, 124.42, 124.32, 124.25, 123.99, 121.91, 97.65, 97.55, 96.82, 96.73, 95.90, 75.21, 71.96, 69.63, 69.07, 69.00, 68.91, 68.78, 68.47, 68.29, 67.54, 65.17, 64.34, 63.71, 62.22, 58.17, 58.05, 48.48, 46.54, 17.71. HRMS (ESI) calcd for $\mathrm{C}_{99} \mathrm{H}_{91} \mathrm{~N}_{4} \mathrm{O}_{32}[\mathrm{M}+\mathrm{NH} 4]^{+}: 1848.5650$, found: 1848.5625.

Compound 21: A mixture of compound 20 ($50 \mathrm{mg}, 0.0273 \mathrm{mmol})$, $\mathrm{TsOH}^{2} \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{~g})$, $\mathrm{DCM}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for $8 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ was added, and the solvent was removed under vacuum. The resulting mixture was subjected to column chromatography using $50 \% \mathrm{EtOAc}$ in hexane as eluent, affording the diol as a white solid ($42 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$): $\delta=7.94-7.04$ ($\mathrm{m}, 45$ H), $5.59(\mathrm{q}, ~ J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{p}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{t}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (dd, $J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (dd, $J=12.0,4.5 \mathrm{~Hz}, 1$ H), 4.07 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H})$, $3.66(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.27(\mathrm{~m}, 4 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, 3.17 (ddd, J = $13.5,6.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.90(\mathrm{~m}, 1 \mathrm{H}) .1 .82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 169.07, 165.86, 165.81, 165.67, 165.46, 165.16, 165.03, 164.92, 164.68, 163.90, 133.44, 133.39, 133.30, 133.13, 133.04, 132.94, 132.57, 129.80, 129.79, 129.74, 129.71, 129.67, 129.59, 129.55, 129.44, 129.32, 129.21, 129.02, 128.68, 128.57, 128.49, 128.42, 128.39, 128.30, 128.27, 128.20, 127.91, 127.78, 101.29, 100.90, 100.87, 100.75, 85.29, 76.38, $75.82,75.63,73.16,73.09,72.97,72.85,72.59,72.09,71.99,71.54,71.49,71.37,69.13$, 69.02, 68.27, 62.20, 62.16, 61.67, 52.46, 50.47, 29.69, 20.30. HRMS (ESI) calcd for $\mathrm{C}_{92} \mathrm{H}_{87} \mathrm{~N}_{4} \mathrm{O}_{32}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 1759.5303$, found: 1759.5351.

Compound 22: A mixture of compound 21 ($36 \mathrm{mg}, 0.02 \mathrm{mmol}$), diacetoxyiodobenzene (BAIB, $16.6 \mathrm{mg}, 0.05 \mathrm{mmol})$, TEMPO ($0.93 \mathrm{mg}, 0.006 \mathrm{mmol}$), DCM (6 ml), and water (1.5 mL) was stirred at room temperature for 40 h . After dilution with DCM (20 mL), the resulting mixture was washed with water (20 mL), concentrated under vacuum and diluted with DCM (5 mL). To this solution was added freshly prepared diazamethane in ether (30 mL), and the reaction mixture was stirred for 1 h . After addition of 0.2 mL of AcOH to the mixture, the solvent was removed under vacuum. The crude product was subjected to column chromatography using 50% EtOAc in hexanes as eluent, affording a white solid ($26 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta=7.93-7.05(\mathrm{~m}, 45 \mathrm{H}), 5.59(\mathrm{t}, \mathrm{J}=9.50$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{t}, J=9.50 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ ($\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.23(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.60-3.53 (m, 3 H), $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (td, J = $13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 165.13, 162.99, 161.92, 161.75, 161.51, 161.20, 160.99, 160.74, 159.90, 129.49, 129.36, 129.30, 129.10, 128.86, 128.63, 125.92, 125.85, 125.66, 125.62, 125.53, 125.37, 125.32, 125.16, 125.09, 124.69, 124.60, 124.48, 124.36, 124.32, 124.27, 123.97, 97.34, 97.12, 96.89, 96.62, $80.73,72.35,71.64,71.29,69.29,68.94,68.66,68.19,67.89,67.69,67.62,67.56,65.89$,
65.19, 64.23, 58.03, 48.51, 48.25, 46.52, 25.75. HRMS (ESI) calcd for $\mathrm{C}_{93} \mathrm{H}_{87} \mathrm{~N}_{4} \mathrm{O}_{33}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 1787.5253$, found: 1787.5198 .

TS-3-N \mathbf{N}_{3} Antigen: To a solution of compound 22 ($12 \mathrm{mg}, 0.0068 \mathrm{mmol}$) in THF (4 mL), $\mathrm{MeOH}(4 \mathrm{~mL})$ was added $\mathrm{NaOMe}(0.1 \mathrm{~mL}, 1 \mathrm{M}$ in methanol). The mixture was stirred at room temperature for 10 h before water (0.1 mL) was added. The mixture was stirred for 10 h , followed by addition of $\mathrm{AcOH}(0.1 \mathrm{~mL})$. The solvent was removed under vacuum, and the resulting material was subjected to column chromatography using a mixture of $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(60 / 25 / 20)$, affording desired product as a white solid ($3.3 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right): \delta=4.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.384(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.381 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=4.5 \mathrm{H}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=$ 6.0, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (brs, 1 H), 3.80 (brs, 1 H), 3.71-3.60 (m, 6 H$)$, 3.54-3.33 (m, 11 H), $3.22(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}\right): 175.48,175.25,102.30,102.25,102.55$ (2C), 82.71, 78.91, 78.83, $75.71,75.67,75.24,74.79,74.75,74.24,74.11,73.12,72.99,72.90,72.73,71.68,70.11$, 68.44, 60.00, 50.47. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{NaN}_{3} \mathrm{O}_{23}$ [M+Na] ${ }^{+}: 786.2029$, found: 786.2014.

Reagents: a: i) $\mathrm{NaOMe}, \mathrm{MeOH}$, amberlite; ii) DMF, $\mathrm{TsOH}_{2} \mathrm{O}$, dimethoxybenzaldehyde; iii) $\mathrm{BzCI}, \mathrm{DMAP}, \mathrm{DCM}, \mathrm{Et}_{3} \mathrm{~N}$; iiii) $\mathrm{DCM}, \mathrm{MeOH}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, 62 \%$ yield for 4 steps. b: DCM, TBSCl , imidazole, 92% yield. c: $\mathrm{DCM}, 4 \AA$ molecular
 ethanol, chlorotris(triphenylphosphine)rhodium(I); ii) $\mathrm{THF}, \mathrm{MeOH}, \mathrm{NaOMe}, 40 \%$ yield for 2 steps.

Scheme 2. Synthesis of TS-14 Antigen

Compound 24: To a solution of compound $23(3.33 \mathrm{~g}, 7 \mathrm{mmol})$ in methanol (80 mL) was added NaOMe ($1.2 \mathrm{~mL}, 1 \mathrm{M}$ in methanol). The mixture was stirred for 2 h . Amberlite $(11 \mathrm{~g})$ was added to quench the reaction. The mixture was stirred for additional 30 min then the resin was removed via filtration. The filtrate was concentrated under vacuum. The crude compound was then dissolved in DMF (30 mL), followed by addition of dimethoxybenzaldehyde ($2.22 \mathrm{ml}, 14.8 \mathrm{mmol}$) and $\mathrm{TsOH} \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~g}, 0.5 \mathrm{mmol})$. The mixture was stirred at $65{ }^{\circ} \mathrm{C}$ for 2 h , then $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ was added. The solvent was removed under reduced pressure, and the residue was dissolved in DCM (250 mL) and washed with water (100 mL). The organic phase was concentrated under vacuum. The resulting compound was dissolved in dry $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{ml})$ and $\mathrm{DCM}(100 \mathrm{~mL})$ and treated with $\mathrm{BzCl}(3.5 \mathrm{~mL}, 22.2 \mathrm{mmol}), \mathrm{DMAP}(0.1 \mathrm{~g}, 0.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 10 h . The reaction was quenched by addition of methanol (10 mL) at the same temperature, diluted with DCM $(200 \mathrm{~mL})$, washed with $0.5 \mathrm{~N} \mathrm{HCl}(300 \mathrm{~mL})$ and saturated NaHCO_{3} solution (400 mL). The organic phase was concentrated then dissolved in DCM (30 mL) and MeOH (20 ml). TsOH $\cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~g})$ was added, and the mixture was stirred at room temperature for 5 h . $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ was then added. The reaction mixture was then concentrated, diluted with DCM (100 mL), washed with saturated NaHCO_{3} solution. The organic phase was concentrated and subjected to flash column chromatography using a mixture of EtOAc and hexanes ($1 / 2$ to $1 / 1$) as eluent, giving 1.97 g (62% yield) of compound 24 as a clear oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.85-7.26(\mathrm{~m}, 9 \mathrm{H}), 5.926$ (dd, $J=10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (ddd, $J=21.5,11.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (dd, $J=17.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.05 (dd, $J=10.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.45 (dd, $J=11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=$ $12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (dd, $J=1.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (dd, $J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (t, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.726 (td, $J=9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (brs, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 167.03, 134.19, 133.49, 133.45, 131.37,
129.87, 128.83, 128.40, 123.55, 117.69, 97.32, 75.68, 74.53, 70.56, 70.31, 62.30, 54.57. HRESI-MS: $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{8}$ (453.1424). [M+Na] ${ }^{+}$cald: 476.1321, found: 476.1308.

Compound 25: Compound 24 ($906 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in DCM (30 mL), followed by addition of TBSCl ($0.375 \mathrm{~g}, 2.5 \mathrm{mmol}$) and imidazole ($0.286 \mathrm{~g}, 4.2 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h . $\mathrm{MeOH}(2 \mathrm{~mL})$ was added, and the mixture was washed with 5% aqueous $\mathrm{HCl}(100 \mathrm{~mL})$. The organic phase was concentrated, and the product was purified by column chromatography (silica gel) using EtOAc and hexane (1/1) as eluent, affording compound 25 (1.4 g, 92% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 7.90-$ $7.26,5.93$ (dd, $J=15.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.74 (ddd, $J=22.5,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (dd, $J=16.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dd, $J=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (dd, J $=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (tdd, $J=12.5,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (tdd, $J=12.5,4.5,1.5 \mathrm{~Hz}$, 1 H), 4.025 (dd, $J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.998$ (dd, $J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (dt, J = 9.5, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (td, J = 9.5, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.54 (brs, $1 \mathrm{H}, \mathrm{OH}$), 0.92 (s, 9 H), 0.139 (s, 3 H), 0.132 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 166.71, 134.07, 133.54, 133.28, $131.45,129.89,129.07,128.33,123.48,117.60,97.03,74.71,74.26,72.59,69.94,64.45$, 54.47, 25.00, 18.32, $-5.388,-5.410$. HRESI-MS: $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{Si}(567.2288) .[\mathrm{M}+\mathrm{NH} 4]^{+}$cald: 585.2626, found: 585.2613.

Compound 27: Compound 26 ($0.45 \mathrm{~g}, 0.604 \mathrm{mmol}$), freshly prepared by treatment of 2,3,4,6-tetra-O-benzoyl-galacopyrannoside with trichloroacetonitrile in the presence of potassium carbonate in DCM) and acceptor $25(0.285 \mathrm{~g}, 0.503 \mathrm{mmol}$) were mixed with molecular sieves ($4 \AA, 500 \mathrm{mg}$) in DCM (6 mL). The mixture was stirred at room temperature for 1 h , cooled to $0^{\circ} \mathrm{C}$, then TMSOTf ($30 \mu \mathrm{~L}$) was added. The mixture was allowed to warm to room temperature overnight. After $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ was added, solids were removed via filtration through a celite pad. The filtrate was concentration, and the residue was purified by flash column chromatography (silica gel) using a mixture of EtOAc and hexane ($1 / 4$ to $1 / 2$) as eluent, affording compound 27 ($0.455 \mathrm{~g}, 79 \%$ yield) as a white power. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.06-7.09(\mathrm{~m}, 29 \mathrm{H}), 6.12$ (dd, $J=11.0,9.5 \mathrm{~Hz}, 1$ H), 5.76 (d, J = $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (dt, $J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J=10.5,8.5 \mathrm{~Hz}, 1$ H), 5.41 (dd, $J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.39 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.124$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (dd, $J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (dd, $J=11.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.414 (dd, $J=10.5,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=13.5,6.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.98 (dd, $J=11.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dd, $J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dd, $J=$ $11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (dd, $J=11.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (d, J =
$10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.11$ (s, 3 H), 0.08 (s, 3 H). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}$, ppm): 163.15, 162.97, 162.92, 162.71, 162.02, 131.11, 130.86, 130.75, 130.65, 130.36, 127.39, 127.35, 127.26, 127.21, 127.17, 127.14, 127.13, 127.09, 127.00, 126.61, 126.26, 126.12, 126.05, 125.94, 125.87, 125.83, 125.67, 125.51, 120.94, 114.79, 97.89, 94.36, 72.82, $72.43,69.59,68.74,68.47,67.51,67.07,65.21,59.00,58.36,52.41,23.30,15.68,-7.38$, -7.41. HRESI-MS: $\mathrm{C}_{64} \mathrm{H}_{63} \mathrm{NO}_{17} \mathrm{Si}$ (1145.3865). $[\mathrm{M}+\mathrm{NH} 4]^{+}$cald: 1163.4203, found: 1163.3753.

Compound 28: To a solution of compound 27 ($0.2 \mathrm{~g}, 0.175 \mathrm{mmol}$) in DCM (5 mL) and acetonitrile (20 mL) in 50 mL plastic centrifuge tube was added aqueous HF (48%, 2 mL). The mixture was stirred at room temperature for 2 h , poured onto solid NaHCO_{3} (10 $\mathrm{g})$ in a conical flask. After 30 min , DCM (100 mL) was added. The organic phase was concentrated under reduced pressure. The crude product was subject to column chromatography (silica gel) with a mixture of EtOAc and hexane (1/1) as eluent, affording $0.153 \mathrm{~g}\left(85 \%\right.$ yield) of clear oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 8.04-7.16(\mathrm{~m}, 29 \mathrm{H}), 6.16$ (dd, J = 10.5, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.78 (d, J = $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.74-5.66 (m, 1 H), 5.70 (t, J = 10.5 $\mathrm{Hz}, 1 \mathrm{H}$), 5.50 (dd, $J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.48 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (ddd, $J=17.0$, $1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (ddd, $J=17.0,1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (dd, $J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (tdd, $J=12.0,5.0,1.0 \mathrm{~Hz}, 1$ H), 4.04 (dd, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (tdd, $J=12.0,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85-3.79 (m, 2 H), 3.676 (dd, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (td, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 165.58,165.47,165.34,165.24,164.77,134.09,133.43,133.34,133.25$, $133.19,133.12,129.96,129.75,129.72,129.70,129.64,129.59,129.43,129.10,128.94$, $128.72,128.55,128.53,128.49,128.25,128.23,123.54,117.78,100.93,97.39,75.70$, 74.81, 71.88, 71.08, 70.40, 70.12, 67.65, 60.91, 60.43, 54.89. HRESI-MS: $\mathrm{C}_{58} \mathrm{H}_{49} \mathrm{NO}_{17}$ (1031.3000). $[\mathrm{M}+\mathrm{NH} 4]^{+}$cald: 1049.3338, found: 1049.3327.

Compound 30: Donor 29 ($71 \mathrm{mg}, 0.091 \mathrm{mmol}$, freshly prepared by treatment of $2,3,6,2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-tetra-O-acetyl-D-lactose with trichloroacetonitrile in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$), acceptor 28 ($77.3 \mathrm{mg}, 0.075 \mathrm{mmol}$), molecular sieves ($4 \AA, 400 \mathrm{mg}$) were mixed in DCM (6 mL). The mixture was stirred at room temperature for 1 h , followed by addition of TMSOTf $(20 \mu \mathrm{~L})$. The reaction was allowed to stirr overnight before $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ was
added. After filtration through a celite pad, the solvent was evaporated. The residue was purified by column chromatography (silica gel) using a mixture of EtOAc and hexane ($1 / 1$ to $3 / 1$), affording a clear glass ($100.2 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$): $\delta 7.97-$ 7.15 (m, 29 H), 6.13 (dd, $J=11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.68(\mathrm{~m}, 1$ H), 5.679 (dd, $J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 5.37 (dd, $J=4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5,147 (dd, $J=10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.121$ (ddd, $J=$ $15.5,2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (ddd, $J=11.0,2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (dd, $J=12.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.895(\mathrm{dd}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{dd}, J=11.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (tdd, $J=13.0,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-$ $4.00(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=11.0,5.5 \mathrm{~Hz}, 1$ H), 3.72 (t, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (dd, $J=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (ddd, $J=14.5,6.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (s, 3 H), 2.12 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.05 (s, 3 H), 1.98 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 165.39, 165.12, 164.94, 164.83, 164.54, 164.33, 164.05, 160.30, 160.21, 160.12, 159.31, 128.85, 128.30, 128.23, 128.07, 127.97, 124.77, 124.54, 124.51, 124.40, 124.34, 124.21, 123.77, 123.67, 123.34, 123.11, 123.06, 118.33, 112.53, 110.00, 96.086 (2C), $95.78,91.79,72.44,71.15,69.05,67.69$, $67.63,66.47,66.35,65.96,65.80,65.48,65.02,64.81,63.84,62.36,61.47,56.88,55.61$, $55.38,49.56,15.63,15.44,15.43,15.42,15.41$. HRESI-MS: $\mathrm{C}_{84} \mathrm{H}_{83} \mathrm{NO}_{34}$ (1649.4796). $[\mathrm{M}+\mathrm{NH} 4]^{+}$cald: 1667.5134, found: 1667.5163.

Compound 31: To a solution of compound $\mathbf{3 0}$ ($100 \mathrm{mg}, 0.061 \mathrm{mmol}$) in dry methanol (2 mL) and THF (8 mL) was added $\mathrm{NaOMe}(1 \mathrm{~mL}, 1 \mathrm{M}$ in methanol). The mixture was stirred at room temperature for 2 h . After quencheding by acetic acid (0.1 mL), solvent was removed under reduced pressure. The residue was dissolved in dry methanol (9 mL). To this solution was added ethylene diamine (3.5 mL). The reaction was stirring at reflux overnight. The solvent was removed under reduced pressure. The residue was dissolved in dry pyridine (15 mL), followed by addition of acetic anhydride (8 mL) and DMAP (10 $\mathrm{mg}, 0.082 \mathrm{mmol}$). The mixture was stirred overnight, quenched by methanol (8 mL), diluted with DCM (180 mL), and washed with 1 N aqueous $\mathrm{HCl}(300 \mathrm{~mL})$, a saturated aqueous NaHCO_{3} solution, and brine. The organic phase was concentrated under vacuum. The product was purified by flash column chromatography (silica gel) using a mixture of methanol and DCM ($0 / 1-1 / 9$), affording a colorless oil ($49 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 6.71$ (d, J = $9.5 \mathrm{H}, 1 \mathrm{H}$), $5.84(\mathrm{~m}, 2 \mathrm{H}), 5.35$ (dd, J = 9.0, 3.0 $\mathrm{Hz}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 4 \mathrm{H}), 4.95(\mathrm{dd}, J=$ $10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.44(\mathrm{~m}, 3 \mathrm{H})$, 4.29 (dd, $J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-3.92(\mathrm{~m}, 8 \mathrm{H}), 3.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96$ (s, 6 H), 1.95 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 170.46, 170.35, 170.31, 170.13,
170.06, 169.99, 169.68, 169.61, 169.48, 169.08, 133.53, 117.33, 109.24, 101.10, 100.61, 100.52, 99.59, 75.99, 75.08, 74.40, 72.83, 72.60, 71.79, 71.67, 70.95, 70.58, 70.53, 69.37, 69.13, 69.06, 68.13, 66.78, 66.57, 62.01, 60.79, 60.71, 52.31, 38.87, 23.19, 21.07, 20.83, 20.79, 20.76, 20.73, 20.64, 20.62, 20.53, 20.50. HRESI-MS: $\mathrm{C}_{53} \mathrm{H}_{73} \mathrm{NO}_{33}$ (1251.4065). $[\mathrm{M}+\mathrm{NH} 4]^{+}$cald: 1269.4409 , found: 1269.4182.

TS-14 Antigen: To a solution of compound 31 ($49 \mathrm{mg}, 0.039 \mathrm{mmol}$) in toluene (12 mL) and ethanol (6 mL) was added Wilkinson's catalyst ($13 \mathrm{mg}, 0.014 \mathrm{mmol}$). The reaction was stirred at reflux for 5 h . After removal of solvent under vacuum, the crude mixture was dissolved in THF (8 mL) and water (0.5 mL), followed by addition of NBS $(0.1 \mathrm{~g})$. The mixture was stirred for 30 min , diluted with DCM $(40 \mathrm{~mL})$, then washed with a saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (100 mL). The organic layer was concentrated, and the product was purified by silica gel column chromatography using 40\% EtOAc in hexane as eluent, affording 34 mg of crude product. This product was dissolved in THF (3 mL) and $\mathrm{MeOH}(3 \mathrm{~mL})$, followed by addition of $\mathrm{NaOMe}(1 \mathrm{M}, 0.1 \mathrm{~mL})$. After stirring, the reaction mixture was quenched with $\mathrm{AcOH}(0.05 \mathrm{~mL})$. The solvent was then evaporated, and the residue was subjected to silica gel column chromatography using a mixture of EtOAc, MeOH and water ($60 / 25 / 20$) as eluent, affording $11 \mathrm{mg}(40 \%$ yield as a mixture of anomers) of TS-14 Antigen as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz ; $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 5.05$ (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05$ ($\mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.34(\mathrm{~m}, 17 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}$): 174.36, 111.00, 102.85, 102.69, 102.24, 94.93, 90.53, 78.27, 78.01, 75.27, 75.18, 74.62, 74.58, 74.18, 73.47, 72.56, 72.42, 72.39, 71.96, 70.86, 69.15, 68.98, 68.50, 68.46, 67.45, 62.38, 60.99, 60.93, 59.95, 56.05, 53.60, 22.08, 21.79. HRESI-MS: $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{21}$ (707.2484). [$\left.\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$cald: 725.2864, found: 725.2820.

Reagents: $\mathrm{a}: \mathrm{THF}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NaOMe}, 77 \%$ yield.
Scheme 3. Synthesis of TS-14- N_{3}

TS-14- N_{3} : To a solution of compound 32 ($21 \mathrm{mg}, 0.0164 \mathrm{mmol}$) in THF (3 mL), MeOH $(3 \mathrm{~mL})$ and water (0.1 mL) was added a solution of NaOMe in $\mathrm{MeOH}(1 \mathrm{M}, 0.3 \mathrm{~mL})$. The mixture was then stirred at room temperature overnight, followed by addition of $\mathrm{AcOH}(0.2$ mL). After removal of solvent under reduced pressure, the crude product was subsequently purified by silica gel column chromatography using a mixture of solvents (EtOAc/MeOH/H2O: 60/25/20) as eluent, affording TS-14- \mathbf{N}_{3} as a white solid (9.8 mg , 77% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; $\mathrm{CD}_{3} \mathrm{OD}$): 4.53 (dd, $J=12.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.0,1.5 \mathrm{~Hz}, 1$ H), 4.008 (ddd, $J=11.0,5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (dd, $J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.90 (dd, J = $12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81-3.40 (m, 22 H), 3.32 (m, 1 H), 1.99 (s, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{ppm}$): 172.23, 103.66, 103.40, 103.11, 101.22, $79.09,78.90,75.66,75.44,75.03,74.97,74.02,73.38,73.29,72.75,71.21,71.13,68.95$, 68.88, 68.09, 67.18, 61.08, 60.44, 55.13, 50.37, 21.66. HRESI-MS: $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{21}$ (776.2811). $[\mathrm{M}+\mathrm{Na}]^{+}$cald: 799.2713, found: 799.2726.

TS-14-Acid Antigen

Reagents: a: succinic anhydride, DMF, 76% yield.
Scheme 5. Synthesis of TS-14-Acid Antigen

TS-14-Acid Antigen: A mixture of compound 34 (15 mg, 0.02 mmol , prepared from compound 33 as described above), succinic anhydride ($10 \mathrm{mg}, 0.1 \mathrm{mmol}$), and DMF (5 mL) was stirred at room temperature for 20 h . The solvent was evaporated under reduced pressure, and the crude mixture was subjected to flash column chromatography (silica gel) using a mixture of EtOAc, MeOH and water (60/25/20) as the eluent, giving TS-14Acid Antigen as a white powder ($13 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$): 4.39 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.38 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dd, $J=10.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.36(\mathrm{~m}, 23 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.88(\mathrm{~s}, 3$ H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}$): 175.82, 174.50, 102.84, 102.61, 102.31, 101.12, $78.27,77.49,75.24,75.15,74.60,74.16,73.33,72.54,72.41,72.35,72.19,71.95,70.85$, 70.82, 68.45, 68.18, 62.36, 60.98, 60.91, 59.94, 54.99, 39.17, 32.91, 32.25, 22.08. HRESI-MS: $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{~N}_{52} \mathrm{O}_{24}$ (850.3067). [M+Na] ${ }^{+}$cald: 873.3001, found: 873.2940.

Supplemental References

1. Brown SD, Fiedler JD, and Finn MG. Assembly of hybrid bacteriophage Q β viruslike particles. Biochemistry. 2009;48(47):11155-7.
2. Jansen WT, Gootjes J, Zelle M, Madore DV, Verhoef J, Snippe H, and Verheul AF. Use of highly encapsulated Streptococcus pneumoniae strains in a flowcytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies. Clin Diagn Lab Immunol. 1998;5(5):703-10.
3. Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R, and Ratner D. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity. J Immunol Methods. 2000;233(1-2):16777.
4. Lefranc MP, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, ThouveninContet V, and Lefranc G. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol. 2003;27(1):55-77.
5. Otwinowski Z, and Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276(307-26.
6. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, and Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40(4):658-74.
7. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(2):213-21.
8. Emsley P, and Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126-32.
9. Schrödinger LLC. 2010.
10. Wallace AC, Laskowski RA, and Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):12734.
11. Connolly M. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983;221(4612):709-13.
12. Wang P, Sidney J, Dow C, Mothe B, Sette A, and Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4(4):e1000048.
13. Scott CA, Garcia KC, Stura EA, Peterson PA, Wilson IA, and Teyton L. Engineering protein for X-ray crystallography: the murine Major Histocompatibility Complex class II molecule I-A ${ }^{\text {d }}$. Protein Sci. 1998;7(2):413-8.
14. Landais E, Romagnoli PA, Corper AL, Shires J, Altman JD, Wilson IA, Garcia KC, and Teyton L. New design of MHC Class II tetramers to accommodate fundamental principles of antigen presentation. J Immunol. 2009;183(12):794957.
15. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S, et al. Microbial glycan
microarrays define key features of host-microbial interactions. Nat Chem Biol. 2014;10(6):470-6.
