Supplementary Materials and Methods

Hepatocyte toxicity assay. Freshly isolated hepatocytes were incubated for overnight with varying concentrations (0-125 μ M) of sodium glycochenodeoxycholate (GCDC) or sodium glycocholate hydrate (GCA). Cell numbers were counted.

Bile acid assay. Bile acids were measured using Mouse Total Bile Acids Assay Kit (Crystal Chem) following the manufacturer's instructions.

In vivo localization of FITC-labeled proteins. CCN1 or JAG1 were fluorescein isothiocyanate (FITC)-labeled using a ProtOn Fluorescein labeling kit according to the manufacturer's instructions (Vector Laboratories). Proteins (CCN1, 1 mg/kg; Jag1, 1 mg/kg) were injected via retro-orbital and intraperitoneal delivery, and liver tissues were collected after 2 or 24 hours. Fluorescent signals were obtained using liver cryosections (7 μm).

Immunocytochemistry. For p16 staining, cholangiocytes were stained with anti-p16 antibody (Santa Cruz Biotech) and visualized with anti-rabbit IgG Alexa Fluor 488 (Invitrogen). TUNEL assay was performed using the ApopTaq Red detection kit (Millipore) following manufacturer's protocol.

SUPPLEMENTAL FIGURE LEGENDS

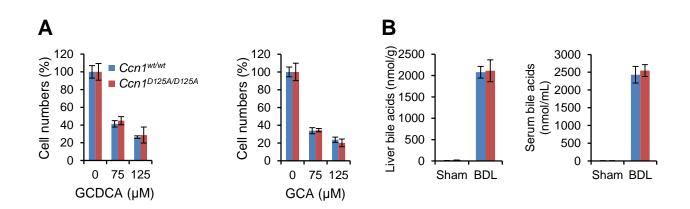
Supplemental Figure S1. Bile acid accumulation and hepatocyte sensitivity to bile acid in *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice. (A) Primary hepatocytes were isolated from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice and incubated with indicated concentration of GCDCA or GCA overnight, and cell numbers were counted. Average values from triplicate determination are expressed as mean \pm s.d. (B) Liver bile acids and serum bile acids from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice 7 days after BDL or sham operation were measured. Data expressed are mean \pm s.d. n=6 per group. Bile acid production and hepatocyte sensitivity to bile acid in *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}*

Supplemental Figure S2. Hepatocytes proliferation from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice after BDL or DDC-diet were not different. Liver sections from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* 7 days after BDL (upper panel) or DDC-diet for 6 weeks (lower panel) were immunostained for PCNA, and percentage of PCNA-positive hepatocytes were quantified and expressed as mean \pm s.d. (n=6 per group). Bar=50 µm.

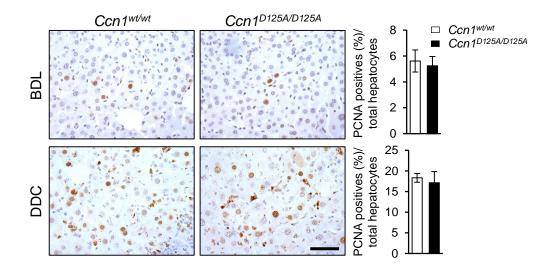
Supplemental Figure S3. Localization of FITC-labeled CCN1 or Jag1 in the liver. (A) FITClabeled CCN1 protein or soluble Jag1 (1 mg/kg each) were delivered into WT mice via retroorbital injection (A) or intraperitoneal injection (B), and liver tissues were collected after 2 or 24 hours. Fluorescent signals (494 nm excitation/518 nm emission) were obtained in liver cryosections (7 μ m). Bar=100 μ m.

Supplemental Figure S4. Knockdown of *Ccn1* did not induce cholangiocyte apoptosis or senescence. LMCCs were incubated with *siCcn1* or non-targeting siRNA control for 2 days,

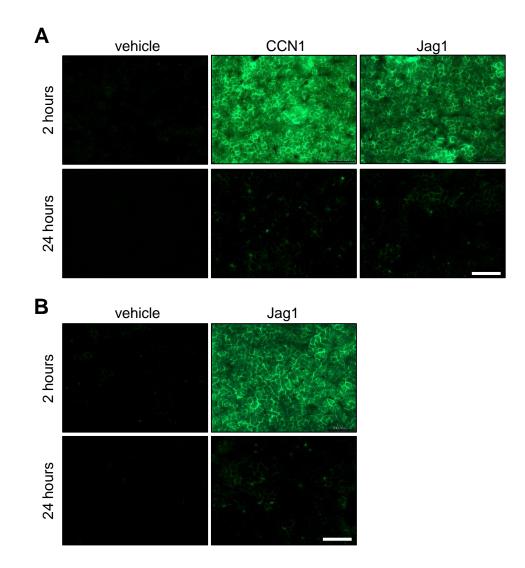
and analyzed for TUNEL staining (left panel) and stained with antibody recognizing p16 (right panel). Bar = 50 μ m.

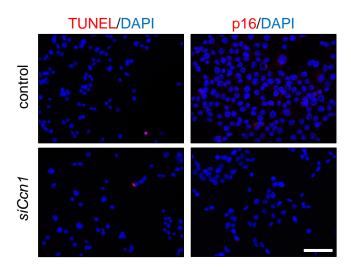

Supplemental Figure S5. Adenoviral overexpression of *Ccn1* enhanced cholangiocyte cell proliferation. LMCCs were transduced with adenovirus overexpressing *Ccn1* or *LacZ* as control. (A) Pictures showing cells 2 days after viral transduction. (B) Cells were incubated with BrdU for 25 min. and percentage of BrdU positive cells were counted. Data are expressed as mean \pm s.d. of triplicate determinations. **p*<0.001, Student *t* test.

Supplemental Figure S6. Efficiency of siRNA knockdown. LMCCs were treated siRNA targeting indicated integrin subunits and non-targeting siRNA as control for 2 days. Total RNA was isolated and mRNA expression of genes indicated was evaluated by qRT-PCR. Data are expressed as mean \pm s.d. of triplicate determinations. **p*<0.0001, Student *t* test.

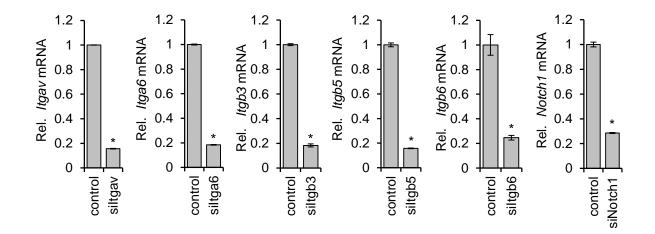

Supplemental Figure S7. Expression of proliferation-related NF κ B target genes. LMCCs were treated with *siCcn1*, *siJag1* or non-targeting siRNA as control for 2 day, or treated overnight with purified recombinant CCN1 or BSA as control (4 µg/ml each), BAY11-7082 (5 µM), control peptide (25 µM) or NBD (25 µM). Expression of cyclin D1, IL-6, and β-actin was measured by qRT-PCR of mRNA. Data are expressed as mean ± s.d. of triplicate determinations. **p*<0.005, Student *t* test.

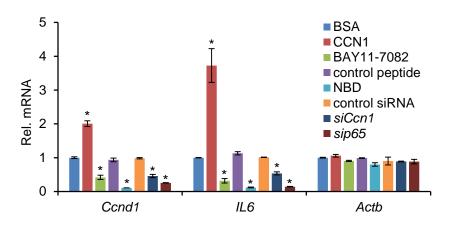
Supplemental Figure S8. Gene expression in cholangiocytes treated with *siCcn1* or CCN1 **protein.** (A) LMCCs were treated with *siCcn1* or non-targeting siRNA as control for 2 days. Expression of indicated genes was measured by qRT-PCR of mRNA. (B) Cells were treated overnight with purified recombinant CCN1 or BSA as control (4 µg/ml each), and expression of

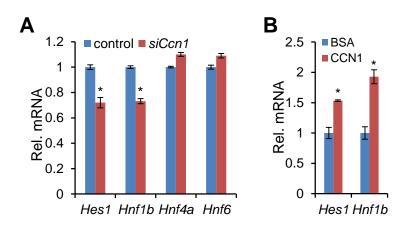

indicated genes was analyzed by qRT-PCR. Data are expressed as mean \pm s.d. of triplicate determinations. **p*<0.004, Student *t* test.


Supplemental Figure S1. Bile acid accumulation and hepatocyte sensitivity to bile acid in *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice. (A) Primary hepatocytes were isolated from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice and incubated with indicated concentration of GCDCA or GCA overnight, and cell numbers were counted. Average values from triplicate determination are expressed as mean \pm s.d. (B) Liver bile acids and serum bile acids from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice 7 days after BDL or sham operation were measured. Data expressed are mean \pm s.d. n=6 per group. Bile acid production and hepatocyte sensitivity to bile acid in *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice vere similar.

Supplemental Figure S2. Hepatocytes proliferation from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* mice after BDL or DDC-diet were not different. Liver sections from *Ccn1^{wt/wt}* and *Ccn1^{D125A/D125A}* 7 days after BDL (upper panel) or DDC-diet for 6 weeks (lower panel) were immunostained for PCNA, and percentage of PCNA-positive hepatocytes were quantified and expressed as mean ± s.d. (n=6 per group). Bar=50 µm.


Supplemental Figure S3. Localization of FITC-labeled CCN1 or Jag1 in the liver. (A) FITC-labeled CCN1 protein or soluble Jag1 (1 mg/kg each) were delivered into WT mice via retro-orbital injection (A) or intraperitoneal injection (B), and liver tissues were collected after 2 or 24 hours. Fluorescent signals (494 nm excitation/518 nm emission) were obtained in liver cryosections (7 µm). Bar=100 µm.


Supplemental Figure S4. Knockdown of *Ccn1* did not induce cholangiocyte apoptosis or senescence. LMCCs were incubated with *siCcn1* or non-targeting siRNA control for 2 days, and analyzed for TUNEL staining (left panel) and stained with antibody recognizing p16 (right panel). Bar = $50 \mu m$.


Supplemental Figure S5. Adenoviral overexpression of *Ccn1* enhanced cholangiocyte cell proliferation. LMCCs were transduced with adenovirus overexpressing *Ccn1* or *LacZ* as control. (A) Pictures showing cells 2 days after viral transduction. (B) Cells were incubated with BrdU for 25 min. and percentage of BrdU positive cells were counted. Data are expressed as mean \pm s.d. of triplicate determinations. **p*<0.001, Student *t* test.

Supplemental Figure S6. Efficiency of siRNA knockdown. LMCCs were treated siRNA targeting indicated integrin subunits and non-targeting siRNA as control for 2 days. Total RNA was isolated and mRNA expression of genes indicated was evaluated by qRT-PCR. Data are expressed as mean \pm s.d. of triplicate determinations. **p*<0.0001, Student *t* test.

Supplemental Figure S7. Expression of proliferation-related NF_KB target genes. LMCCs were treated with *siCcn1*, *siJag1* or non-targeting siRNA as control for 2 day, or treated overnight with purified recombinant CCN1 or BSA as control (4 µg/ml each), BAY11-7082 (5 µM), control peptide (25 µM) or NBD (25 µM). Expression of cyclin D1, IL-6, and β -actin was measured by qRT-PCR of mRNA. Data are expressed as mean ± s.d. of triplicate determinations. **p*<0.005, Student *t* test.

Supplemental Figure S8. Gene expression in cholangiocytes treated with *siCcn1* or CCN1 protein. (A) LMCCs were treated with *siCcn1* or non-targeting siRNA as control for 2 days. Expression of indicated genes was measured by qRT-PCR of mRNA. (B) Cells were treated overnight with purified recombinant CCN1 or BSA as control (4 μ g/ml each), and expression of indicated genes was analyzed by qRT-PCR. Data are expressed as mean ± s.d. of triplicate determinations. *p<0.004, Student *t* test.

Supplementary Table 1. Primer sequences used in this study.

Gene	Orientation	Sequence (5' to 3')	
Actb	sense	ctaaggccaaccgtgaaag	
ACID	antisense	accagaggcatacagggaca	
Ccn1	sense	aaaggcagctcactgaag	
	antisense	gccggtatttcttgacac	
Ccnd1	sense	taggccctcagcctcact	
Ochur	antisense	ccacccctgggataaagcac	
Cftr	sense	gctagtgctgatttggtgcg	
0111	antisense	gtcagccactcccacgtaaa	
Ck19	sense	acttgcgcgacaagattc	
OK19	antisense	aacttggttctgaagtcatctgc	
CypE	sense	ttcacaaaccacaatggcacaggg	
Сурс	antisense	tgccgtccagccaatctgtcttat	
DII1	sense	tacacatgttcctgccgacc	
	antisense	aggtgcaagagaagctgtcc	
DII3	sense	gcaccttctccctcgtcatt	
DIIS	antisense	gaagtgcaactcccatgtgc	
DII4	sense	ggtcgcctgtgcaatgaatg	
<i>D</i> 114	antisense	ttcttgcacggagagtggtg	
Hes1	sense	agaggctgccaaggtttttg	
11651	antisense	tcccactgttgctggtgtaga	
Hnf1a	sense	ccacgccttatacagccaca	
ППТа	antisense	atcaacatggtctgcgggag	
Hnf1a	sense	ccacgccttatacagccaca	
Тіпта	antisense	atcaacatggtctgcgggag	
Hnf1b	sense	catctgcaatggtggtcacag	
	antisense	ggcttgcagtggcacctgttt	
Hnf4a	sense	atgacacgtccccatctgaag	
TIII Ii a	antisense	ctcgaggctccgtagtgtttg	
Hnf6	sense	caaatcaccatctcccagcag	
	antisense	cagactcctcctcctggcatt	
116	sense	accactcccaacagacc	
10	antisense	tccagaagaccagaggaa	
Itaay	sense	cgtcctccaggatgtttctcc	
ltgav	antisense	tccaaaccactggtgggact	
Itaas	sense	tgccacctatcacaaggctg	
Itga6	antisense	cggggaatgctgtcatcgta	
ltab?	sense	gctcattggccttgctactc	
ltgb3	antisense	cccggtaggtgatattggtg	
ltgb5	sense	aatgtggaagtgcccccaat	
	antisense	gtacagggggtttgaggctt	

Gene	Oirentation	Sequence (5' to 3')
ltgb6	sense	tctgaggatggagtgctgtg
	antisense	ccatctgcagacaggtagca
Jag1	sense	cagtgcctctgtgagaccaa
	antisense	aggggtcagagagacaagca
Jag2	sense	gctacttgggcaagaactgc
	antisense	gttccatcctgacggacagt
Notch1	sense	cccactgtgaactgccctat
	antisense	ccccattcttgcagttgttt
Notch2	sense	aaaatctgccctccactgg
	antisense	ccgcttcataacttccctctc
Notch3	sense	tgaacaacgtggaggctacc
	antisense	gcagcctgtccaagtgatct
Notch4	sense	ctctgtcccccaggtttcac
	antisense	cccgggcttcacattcatct
Shh	sense	acccaactccgatgtgttccgtta
	antisense	tatataaccttgcctgccgctgct
Wnt3a	sense	tcactgcgaaagctactcca
	antisense	caccaccgtcagcaacag
Wnt7b	sense	tcccctgtctgtcatgtctctt
	antisense	ctgtttcaagcagaaggaggag

Supplementary Table 2. List of RNAi sequences

Protein	Target sequence (5' to 3')	
Ccn1	taactcattgtttctcgttaactccac	
Integrin alpha-v	gtcatatttagatatgatttctgccac	
Integrin alpha-6	aaagggtaacatcaccttctattgcac	
Integrin beta-3	attccttaactgcttgttctactactg	
Integrin beta-5	ttccactagtgcatatgttgagccctg	
Integrin beta-6	ataccataactaatacaatccttccat	
Jagged1	agctatattacaggttgttccttccca	
Notch1	atcttgtaaggaatattgaggctgcca	
p65	gcgagttatagcttcagggtactccat	