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Oxaliplatin, a commonly used chemotherapeutic agent, is associated with 
both acute and chronic neurotoxicity. Chronic sensory neuropathy can be 
dose limiting and may have detrimental effects on patients’ quality of life. 
Preclinical studies provide an understanding of the pathophysiology of che-
motherapy-induced peripheral neuropathy (CIPN) and may be important 
for developing effective preventative interventions. In this issue of the JCI, 
Coriat and colleagues used an animal model and a human pilot trial to eval-
uate the use of mangafodipir to reduce CIPN. Although many pilot clinical 
studies have reported promising data, larger clinical trials have repeatedly 
been unable to confirm these preliminary results. Thus, no agents are cur-
rently clinically recommended for the prevention of CIPN.

Oxaliplatin-associated neuropathy is 
a substantial problem
Oxaliplatin is a commonly used plat-
inum-based chemotherapeutic agent that 
frequently needs to be stopped due to neu-
rotoxicity. The development of oxaliplat-
in-associated neurological symptoms can 
substantially affect patients’ quality of life 
and functional ability, and these neurologic 
defects can last for years in some patients 
(1). The benefits of this drug are constantly 
being weighed against the risk of perma-
nent neurologic disorder. Consequently, 
there has been extensive research into meth-
ods to prevent this troublesome toxicity.

Animal data indicate that drugs can 
prevent CIPN
A better understanding of the pathophysi-
ology and molecular mechanisms respon-
sible for chemotherapy-induced periph-
eral neuropathy (CIPN) is important for 
the development of effective preventative 
interventions. Emerging evidence suggests 
that alterations in the expression or activ-
ity of antioxidants, such as glutathione 
reductase, catalase, and superoxide dis-
mutases (SODs), increase the susceptibil-
ity of neurons to ROS-mediated injury, 
which contributes to neurotoxicity (2). 
Preclinical studies have shown that the 
platinum-based chemotherapeutic drug 
cisplatin generates ROS in dorsal root 

ganglia (DRG) neurons (3). NO, as well 
as other inflammatory byproducts, is 
capable of directly activating neuronal 
transient receptor potential channel A1 
(TRPA1) (4), which has been shown to be 
upregulated in DRG and the trigeminal 
ganglion in vitro and in vivo following 
platinum drug treatment (5, 6). In addi-
tion, mitochondrial damage induced by 
oxidative stress has been suggested as a 
mechanism involved in neurotoxicity fol-
lowing oxaliplatin treatment (7). Recently, 
it has also been proposed that activation 
of poly(ADP-ribose) polymerase (PARP) 
contributes to neuroinflammation and 
increased oxidative stress (8).

These studies of the pathophysiology 
and molecular mechanisms of CIPN have 
led to animal studies of agents that might 
be able to prevent CIPN. Research in ani-
mal models of CIPN has suggested that a 
variety of agents can decrease neurological 
symptoms. Drugs demonstrating promise 
in animal models include PARP inhibi-
tors (8), acetyl-L-carnitine (9), minocycline 
(10), glutathione (11), erythropoietin (12), 
and goshajinkigan (a Japanese traditional 
herbal medicine) (13).

In this issue of the JCI, Romain Coriat 
and colleagues provide support that man-
gafodipir can be added to the list of drugs 
that relieve CIPN in animals (14). Coriat 
et al. demonstrate that mice treated with 
oxaliplatin and the MRI contrast agent 
mangafodipir, or oxaliplatin and MnTBAP, 
which is a manganese chelate with SOD and 
catalase activities, did not develop mechani-
cal hypersensitivity, cold hypersensitivity, or 

deficits in motor function (14). The results 
of mouse pain behavioral studies are fairly 
straightforward; however, the neurotoxic 
effects of oxaliplatin on myelinated fibers of 
the sciatic nerve will require further study. 
Coriat et al. report a decrease in myelinated 
fiber diameter, but no change in axon diam-
eter following oxaliplatin treatment (14). 
These results would suggest that oxaliplatin 
reduces myelin thickness; however, myelin 
is not typically affected by oxaliplatin (15). 
Morphometric and histological studies of 
nerve fibers will be required to determine 
whether mangafodipir is neuroprotective or 
myelin protective.

CIPN-preventing drugs implicated 
in pilot studies lack benefit in larger 
trials
Vitamin E was one of the first compounds 
thought to protect against CIPN. Data sup-
porting vitamin E for the treatment of CIPN 
(16–18) came from three small random-
ized trials with unblinded control groups  
(19–21) and one larger trial that included  
17 patients treated with vitamin E (22). 
Unfortunately, a much larger randomized, 
placebo-controlled, double-blind clinical trial 
was unable to support the use of vitamin E 
for CIPN treatment or prevention (23).

The use of i.v. calcium and magnesium 
(Ca/Mg) for CIPN prevention became a 
common clinical practice after a report 
that compared a series of patients treated 
with i.v. Ca/Mg with a historical control 
group suggested that i.v. Ca/Mg decreased 
neuropathy by about 50% (24). Further-
more, data from a placebo-controlled, 
double-blind clinical trial suggested that 
i.v. Ca/Mg was beneficial (25); however, this 
trial was halted due to the errant suggestion 
that Ca/Mg interfered with the response 
rate of oxaliplatin-based chemotherapy 
(26, 27). As with vitamin E, a large phase 
III clinical trial on the use of i.v. Ca/Mg  
for preventing CIPN determined that this 
treatment was ineffective (28).

In 1990, a report in the New England Jour-
nal of Medicine indicated that an adrenocor-
ticotropic hormone analog (ORG 2766) 
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is expected to worsen with cumulative 
doses, these findings do sound intriguing. 
Unfortunately, to date, none of the previ-
ously reported promising-appearing pilot 
studies have shown clinical benefit when 
tested in large randomized clinical trials. 
Thus, more work will need to be done to 
determine whether mangafodipir will 
really benefit patients with CIPN.

Perspectives and future directions
The development of CIPN is a pertinent 
clinical problem that needs to be addressed. 
It is well established that oxaliplatin-
mediated neurotoxicity correlates with 
a cumulative oxaliplatin dose; therefore, 
International Duration Evaluation in the 
Adjuvant colon cancer (IDEA) trial, an 
international collaborative clinical trial, is 
underway to evaluate whether 3 months 
of oxaliplatin treatment provide the same 
benefit as the current standard of 6 months 
of adjuvant oxaliplatin–based therapy (40). 
This effort will eventually include about  
12,000 patients worldwide and could have 
major implications for the long-term qual-
ity of life and functional capabilities of 
patients with resected colon cancer. Clearly, 
more work is necessary to find effective 
agents that will protect against CIPN and 
allow for the antitumor activity of neuro-
toxic chemotherapeutic agents.
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Hostile takeover: fungal protein  
promotes host cell invasion
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The ability to suppress the immune system has lead to great advances in 
transplant technology and treatment of autoimmune diseases. Unfortu-
nately, the immunosuppression of these patients has led to the rise of oppor-
tunistic infections by organisms that are recalcitrant to current prophylactic 
strategies. One such example is the increase of mucormycosis, an invasive 
infection caused by filamentous fungi of the order Mucorales. In this issue 
of the JCI, Gebremariam and colleagues determined that spore coat homolog 
(CotH) proteins are required for angioinvasion and that these proteins are 
unique to Mucorales. Their findings provide a potential therapeutic target 
for prevention and treatment of mucormycosis.

The rise of mucormycosis
Recent medical advances have made 
remarkable progress in treating previously 
refractory conditions. More aggressive 
and targeted cancer chemotherapies have 
vastly improved outcomes for many malig-
nancies. Inhibition of TNF-α activity now 
affords better control of various autoim-
mune disorders. Moreover, advances in 
solid organ transplantation have dramat-
ically improved the lives of many patients 

with organ failure syndromes. However, 
these revolutionary therapies considerably 
impair patient immunity.

Because of the increased infection risk 
in patients with highly immunocom-
promised states, clinicians have adopted 
concrete strategies for infectious disease 
prevention in many of these patient pop-
ulations. Unfortunately, as our ability 
to suppress infections by the most com-
mon microbial pathogens has improved, 
other, less well-characterized infectious 
agents have begun to fill this clinical 
void. One very important example of this 
phenomenon is the increasing incidence 
of mucormycosis, an invasive infection 

caused by the Mucorales order of filamen-
tous fungi (1, 2). Human pathogens in this 
fungal group include Rhizopus, Mucor, and 
Cunninghamella species.

The increased incidence of mucormy-
cosis has been attributed to many factors, 
including the fact that Mucorales are 
much less susceptible to current antifun-
gal agents than other fungal pathogens. 
Therefore, the use of standard antifungal 
drugs in prophylactic strategies is unlikely 
to successfully prevent this type of infec-
tion (3, 4). Mucormycosis occurs in asso-
ciation with a wide range of disorders. In 
addition to classical immunocompromised 
states, such as prolonged neutropenia and 
organ transplantation, conditions such 
as diabetic ketoacidosis (DKA), undernu-
trition, and iron chelation therapy also 
predispose patients to mucormycosis (2). 
Once established, invasive infections due 
to Mucorales frequently take an aggressive 
clinical course characterized by rapid tissue 
destruction. These infections are difficult 
to treat, requiring high-dose antifungal 
therapy and surgical debridement. Mortal-
ity in mucormycosis remains high, despite 
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