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Mapping quantitative trait loci in humans: 
achievements and limitations

Partha P. Majumder and Saurabh Ghosh

Human Genetics Unit, Indian Statistical Institute, Kolkata, India

Recent advances in statistical methods and genomic technologies have ushered in a new era in mapping clinically 
important quantitative traits. However, many refinements and novel statistical approaches are required to enable 
greater successes in this mapping. The possible impact of recent findings pertaining to the structure of the human 
genome on efforts to map quantitative traits is yet unclear.

Mapping quantitative trait loci
Clinical end points are usually binary — affected or unaffected. 
Such binary end points almost invariably have quantitative 
precursor states. Myocardial infarction — a binary end point 
— for example, has many known quantitative precursors, such 
as blood pressure and cholesterol levels, which determine the 
end-point risk. Such quantitative traits (QTs) almost always 
have strong genetic determinants (that is, are highly heritable). 
It is, therefore, of considerable interest to map the genes under-
lying a QT. The traditional viewpoint has been that tens or even 
hundreds of genes determine a QT, each gene contributing a 
tiny fraction to the overall variation of the QT. If this were true, 
then efforts to map a QT locus (QTL) would be futile. Howev-
er, with the availability of precisely mapped high-density DNA 
markers for many species, early QTL mapping efforts revealed 
a much simpler genetic architecture for many QTs (1–4). The 
emerging paradigm was that even if there were many genes 
determining the value of a QT, some would have major effects, 
and hence their chromosomal locations could potentially be 
determined. Figure 1 illustrates the effects of a single locus 
with 2 alleles on a QT.

Unfortunately, consistent successes in QTL mapping have 
been achieved only in species in which inbred strains or lines 
could be developed. In inbred or experimental populations, the 
parental origin of each allele is known unambiguously, and all 
offspring have parents with the same genotypes. These 2 fea-
tures enable pooling of data across families and testing for 
equality of mean values of the QT in different genotype classes, 
using standard ANOVA procedures. Even environmental het-
erogeneity can be largely controlled experimentally. In humans, 
unambiguous identification of parental origin of alleles or con-
trol for environmental heterogeneity are not possible. Even in 
inbred strains, efforts at fine mapping of QTLs have revealed 
unforeseen complexities and have resulted in many failures 
(5–6), and there are many unresolved issues pertaining to study 
design and statistical analyses (7–8). In humans, and in other 
outbred species, QTL mapping has only had limited success (see 
Taste sensitivity to phenylthiocarbamide for a success story). In this 
review, we shall focus only on QTL mapping in humans.

Approaches to human QTL mapping
The 2 broad approaches — not mutually exclusive, but comple-
mentary — are the candidate gene approach and the marker locus 
approach. In the candidate gene approach, genes that are physi-
ologically or biochemically relevant to the QT (candidate genes) 
are screened, and the effects of variant alleles on the QT are inves-
tigated. This approach cannot lead to the detection of new QTLs. 
Further, it is often difficult to choose candidate genes. Although 
this approach seems attractive, there is not yet sufficient evidence 
to support its general utility.

The availability of polymorphic markers and refinements of 
statistical methods (9) have made the marker locus approach very 
popular. The density of markers and the throughput of marker 
genotyping have increased over the years, and the cost of marker 
genotyping has decreased, further facilitating QTL mapping by 
marker locus approach. Thus, availability of dense markers, high-
throughput genotyping, and cost are no longer limiting factors for 
performing genome-wide scans for positional mapping of QTLs 
(10–13). The major problems at this time seem to be the difficulty 
of gathering high-quality phenotype data in a sample of adequate 
size using an appropriate study design and the analysis of these 
data using a method with high statistical power.

Study designs
The study designs for QTs are, in the main, similar to those for 
binary complex traits, that is, binary traits with multilocus deter-
mination and possibly with environmental influences. Many con-
ceptual and statistical issues are also similar.

Broadly, there are 2 classes of study designs: study designs in which 
large sets of relatives from extended or nuclear families are sampled 
and study designs in which pairs of relatives are sampled (e.g., sibling 
pairs). Often, sampling is not done randomly. For example, when a 
sibpair design is adopted, often both siblings are chosen from one tail 
(upper or lower) of the distribution of the QT (concordant siblings) 
or one sibling is chosen from the upper tail and the other sibling is 
chosen from the lower tail (discordant siblings). Another sampling 
design could include a pair of siblings, one chosen from the upper or 
lower tail of the distribution and the other chosen randomly from 
among the remaining siblings (single selection; ref. 14). Even when 
nuclear or extended families are sampled, the ascertainment of a 
family may be through an individual who belongs to the upper tail or 
exceeds a predetermined cutoff point of the distribution of the QT. 
Alternatively, if the study pertains to a QT that is known to be a pre-
cursor of a clinical end point (e.g., blood pressure level and myocardi-
al infarction), a family may be ascertained through an individual who 
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QTL, QT locus; VC, variance components.
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has encountered the clinical end point. Any nonrandom sampling 
scheme obviously entails the screening of a large number of potential 
sampling units to obtain the requisite number of units that satisfy 
the inclusion criteria. This is expensive in terms of time, effort, and 
money. However, the adoption of a nonrandom sampling strategy is 
statistically more powerful for QTL mapping. Such sampling strate-
gies often require modifications of the standard statistical methods 
for QTL mapping because the resulting distribution of trait values is 
no longer the same as in the original source population.

Central issues in QTL mapping
The ability to map a QTL depends on the magnitude of its effect, 
as measured by the proportion of genetic variance of the QT 

explained by the putative QTL. Whether or not a QTL can be suc-
cessfully mapped also depends on the study design, sample size, 
and statistical method used to analyze the data. In general, even 
in experimental populations, it has been estimated that under 
the second filial generation (F2) design, a QTL with an effect of 
5–15% can be detected with a reasonable (80–90%) statistical 
power if the sample size is between 200 and 300 individuals (8, 
15). In natural populations, such as in humans, sample-size esti-
mation is difficult and involves a lot of assumptions, some of 
which are discussed below.

The second major issue is the nature and distribution of mark-
ers on chromosomes. The usefulness of a marker increases with 
its level of polymorphism (as estimated by the proportion of 
heterozygous individuals at the locus; see Locus heterozygosity and 
marker choice). As the density of markers is increased, the preci-
sion of estimation of the location and effect of the QTL increases. 
The recent finding that the human genome has a block-like struc-
ture with respect to levels of association among loci (16, 17) may 
potentially reduce the number of markers required in genome-
wide scans for QTL mapping to attain the same level of statistical 
power, although there are many unresolved issues (17, 18).

There are other issues that are also central, such as the extent of 
gene-gene interaction (epistasis) and genotype-environment inter-
action in the determination of trait values. However, these issues 
have received little attention with respect to human QTL mapping 
because the statistical intricacies of even the 2 central issues listed 
above are still being worked out.

Statistical methods
Since the positions of the QTLs in the genome are unknown, one can 
gather genotype data at a large number of marker loci and analyze 
these data statistically to test whether there is increased allele shar-
ing at the marker loci among individuals who show similar trait val-
ues (see Human QTL mapping: key principles). If there is increased allele 
sharing, then the QTL probably lies in the vicinity of this marker 
locus; that is, the QT and marker loci are linked (2-point mapping). 
If there is increased allele sharing at several consecutive marker loci, as 
revealed by the joint analysis of the QT data with multiple markers 
(multipoint mapping), then there is a higher probability that the 
QTL lies in the interval spanned by these marker loci.

There are then 2 major goals: (a) measuring the expected level of 
allele sharing at marker loci (based on genotype data) among the 
sampled sets of relatives and (b) testing whether there is an increased 

Figure 1
Genetic effects of a single QTL with 2 alleles. The variances of QT val-
ues within genotypes can be unequal. The differences in mean values 
between AA and Aa genotypes need not be the same as the difference 
in the mean values between Aa and aa genotypes. If the mean value of 
the QT for genotype Aa is exactly in the middle of the mean values for 
genotypes AA and aa, then the 2 alleles A and a have additive effects. 
If the heterozygote mean is shifted toward the mean value of either of 
the homozygotes, then there is a dominance effect.

Taste sensitivity to phenylthiocarbamide
Differences in the ability of humans to taste the sulfur-containing compound phenylthiocarbamide (PTC) were first reported in 
1931. The ability to taste PTC is quantitative. Some individuals find even low concentrations of the compound extremely bitter, 
while others report bitter taste only at high concentrations. A substantial fraction of humans find the compound tasteless even 
at very high concentrations. The ability to taste PTC is heritable.

Using QTL mapping techniques, Kim et al. (63) have found a gene that accounts for 55–85% of the variance in taste sensitivity. 
The gene (designated PTC) is on the long arm of chromosome 7 and encodes a member of the TAS2R bitter taste receptor family. 
The PTC gene consists of 1002 bp in a single exon, encoding a 7-transmembrane domain, heterotrimeric guanine nucleotide-
binding protein–coupled (G protein–coupled) receptor. Within this gene there are 3 common single nucleotide polymorphisms 
(SNPs), all of which result in amino acid changes. These changes at the amino acid postions 49, 262, and 296 are, respectively, 
proline (P) to alanine (A), alanine to valine (V), and valine to isoleucine (I). The 2 haplotypes PAV and AVI are predominant. The 
PAV homozygotes are most taste sensitive (mean PTC score: 10.69–10.00), followed by the PAV/AVI heterozygotes (9.65–8.81), and 
then the AVI homozygotes (4.31–1.86).
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level of sharing among individuals with similar trait values (and, 
therefore, inferring that the marker and the trait loci are linked).

A pair of relatives can share 0, 1, or 2 alleles that are identical by 
descent (IBD). (For an allele to be IBD in a pair of relatives, the allele 
in both the relatives must have been the same allele transmitted 
by the same ancestor.) A general method for calculating the prob-
abilities of sharing 0, 1, or 2 alleles at a locus was given by Li and 
Sacks (19); this was then extended by Campbell and Elston (20),  
and a more general method was developed by Donnelly (21). For 
pedigrees also, methods for estimating IBD probabilities from 
genotype data have been developed (22).

Regression
Haseman-Elston regression was the first statistical method that 
was developed for human QTL mapping (23). This method is 
applicable to human sibpair data. This linear regression model  
(Y = a + bX) includes the squared difference in trait values between 
members of a sibling pair (Y) as the dependent variable and the 
number of alleles shared IBD between them (X) at the marker locus 
(marker IBD score) as the independent variable. If any parent is 
homozygous at the marker locus or if parental genotypes are miss-
ing, then the marker IBD score cannot be determined with certain-
ty. In such a case, the IBD score is estimated by conditioning on 
either the marker genotypes of parents (if available) and the sibs 
at the given marker locus (single-point estimate) or an integrated 
genotype profile based on all available marker loci (multipoint 
estimate) on a chromosome (24, 25). Under the null hypothesis 
of no linkage, the regression coefficient is 0, while under linkage 
it is less than 0. The null hypothesis is easily tested by a standard 
Student’s t test. This method was extended to other relative pairs 
and pairs drawn from larger pedigrees (26). However, there are 
statistical limitations in using the Haseman-Elston regression on 
pedigree data, and it is not considered to be a method of choice.

The choice of the squared trait value difference between mem-
bers of a sibling pair wastes valuable information by not using the 
trait values of the individual siblings. Twenty-five years later, it was 
shown (27) that the inclusion of the sum of trait values of the sib-
lings, along with the squared trait value difference, in the analysis 
results in gain of statistical power. It was suggested (28) that these 2 
variables (squared trait difference and trait sum) be used as depen-
dents in 2 separate linear regression equations with the estimated 
IBD score as the independent variable and that the estimated slopes 
be averaged to draw inferences on linkage. This method relies on 
several assumptions that have been relaxed to develop statistically 
more sound methods of combining the 2 slope estimates; use of a 

mean corrected trait product has been used as a dependent variable 
in the regression, score tests have been proposed, and various statis-
tical properties of these estimators and methods have been explored 
(29–36). A summary of these new statistics is provided in ref. 37. In 
a large sibship, there will be many sibpairs. The squared differences 
in trait values of these sibpairs will be correlated. To allow the inclu-
sion of multiple sibpairs from a large sibship in the statistical analy-
sis, a generalized linear model that assumes a specific correlation 
structure of functions of trait values of sibpairs has been proposed 
(29). To circumvent the problem of assigning weights to different 
sibpairs, Ghosh and Reich (38) have proposed a linear regression 
based on a “contrast function” of trait values within a sibship. The 
maximum-likelihood binomial approach (39), although strictly not 
a regression method, can also accommodate sibship data without 
assumption of any specific probability distribution of trait values. 
The method introduces a latent variable that captures the link 
between QTs and marker information and tests for linkage via a Ber-
noulli parameter modeling the transmission of marker alleles from 
parents to the different sibs within a sibship. These advances in sta-
tistical methodologies have resulted in improvements in statistical 
power to map QTLs, but the regression-based method is applicable 
only to sibpairs and, under some assumptions, to sibships.

Recently, a novel approach has been proposed (40), in which the IBD 
scores have been modeled as a function of observed trait values instead 
of the usual modeling of trait values as a function of IBD scores. This 
method is applicable to large sibships and also to general pedigrees, 
but does not necessarily have more statistical power (41) than a com-
peting method called variance components (VC) (discussed below).

In these regression models, the relationship between the depen-
dent and independent variables being linear is an assumption. This 
assumption is valid when there is no dominance at the trait locus; 
but in the presence of dominance, the regression can deviate from 
linearity. This assumption has been relaxed and nonparametric 
alternatives have been proposed, as discussed later.

Regression methods continue to be widely used because they are 
computationally easy and efficient, and the standard deviations of 
parameters can easily be estimated using resampling techniques 
(42). However, there is no strong statistical reason for using regres-
sion methods for QTL mapping, except when the collected data 
are from pairs of relatives, such as sibling pairs (discussed below).

Variance components
Another popular statistical approach is called the VC method, which 
is applicable to large sibships or pedigrees. In the framework under-
lying this method, the trait value of an individual is assumed to be 
determined by a major gene, random polygenic, and environmental 
effects and covariates. The covariance between trait values of a pair 
of relatives is an increasing function of the extent of allele sharing, 
IBD, at the marker locus. The general framework and methodol-
ogy that is currently popular was developed by Amos (43), although 
Goldgar (44) first proposed this method in the context of human 
QTL mapping. Amos (43) derived expressions for the covariances 
in trait values for a number of common pairs of relatives. The trait 
values of individuals in a pedigree are assumed to follow a multivari-
ate normal distribution, with the variance-covariance matrix deter-
mined by the expressions given in Amos (43) or their straightforward 
generalizations. The likelihood of the observations on a pedigree or 
any other set of relatives can then be written down by standard sta-
tistical methods. The likelihood is maximized to obtain parameter 
estimates, and a likelihood ratio test is used to test for linkage.

Locus heterozygosity and marker choice
Consider an autosomal locus with 3 alleles A, B, and C. Suppose 
in a population the frequencies of the alleles A, B, and C are, 
respectively, 0.31, 0.33, and 0.36. Then the expected propor-
tion of heterozygotes (h) is: 1 – (0.312 + 0.332 + 0.362) = 0.6654.  
For marker loci that are commonly used for QTL mapping, 
estimates of allele frequencies pertaining to the population 
from which samples have been collected are usually available 
from past studies. To choose among competing marker loci, 
one computes the values of h for the various loci and chooses 
the locus that has the highest value for h.
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Various extensions of the basic model and methodology of Amos 
(43) have been made. These include extensions to permit likelihood 
calculations to pedigrees of arbitrary sizes and complexity (25), 
inclusion of gene-gene (45, 46) and gene-environment (47) interac-
tions in the model, and analysis of multiple correlated traits (48). 
When the model assumptions hold, especially multivariate normal-
ity, the VC method is very powerful, considerably more powerful 
than the Haseman-Elston regression. Further, it is readily applicable 
to large and complex pedigrees. Thus, for QTL mapping, the method 
of choice is VC. For sibling pairs, however, it has been shown — both 
by theory and by simulation — that the computationally simpler 
regression methods are as powerful as the VC method (32, 33).

We emphasize here that the statistical power and efficiency of 
the VC method critically depend on whether the assumption that 
the trait values are normally distributed in the population is satis-
fied. However, it is often not feasible to verify distributional and 
other model assumptions. Further, even when the distribution in 
the population from which sampling units are drawn is normal, 
if the sampling design is nonrandom, then the distribution of 
the QT in the data so obtained may be nonnormal, thus violat-
ing the assumptions underlying the VC method. When underlying 
assumptions are violated, parametric methods (that is, methods 
— such as VC — that rely on models that assume specific forms 
of the probability distribution of trait values) can result in a high 
proportion of either false-positive or false-negative inferences. For 
example, if the trait distribution has a sharp peak (leptokurtic) 
and if gene-environment interactions are present, then one can 
get inflated false-positive error rates (49). Some methods based on 
permutation tests — which do not rely on normality of the test 
distribution in drawing inferences — have been proposed to obtain 
P values (50), but these methods entail enormous increase in the 
computational load. The problems associated with the possible 
violation of normality continue to be a limiting factor in practical 
applications of the VC method. Some novel methods have recently 
been proposed to deal with these problems (51), but the difficul-
ties are far from resolved. VC methods for mapping QTLs have 
been implemented in several software packages, including Gene-
hunter (52, 53), Merlin (54), Mx (55), and SOLAR (25).

Nonparametric alternatives
When the assumptions underlying the regression (linearity of rela-
tionship between the dependent and the independent variables) 
and the VC (multivariate normality of QT values of family mem-
bers) methods hold, these methods are statistically quite power-
ful for QTL mapping. However, it is difficult to ensure that these 
assumptions are met, especially for pedigree data. Deviations from 
these assumptions can adversely affect linkage inferences. There-
fore, alternative methods that do not rely critically on these model 
assumptions (model-free approaches) have begun to be developed. 
In these model-free methods, there is inevitably a loss of statistical 
power, but these methods provide safeguards against high rates of 
both false positives and false negatives.

Since the nature of dependence of estimated marker IBD scores 
on the squared difference in sibpair trait values is a function of 
the recombination fraction between the marker and the trait loci 
and other biological parameters, such as interference and domi-
nance at the trait locus, the assumption of a specific form of func-
tional relationship between them may not be a robust strategy. 
Rank-based statistics (23, 56) have been proposed to deal with 
this problem. A proposed nonparametric regression procedure 
based on kernel smoothing (in which the relationship between 
the dependent and the independent variables is estimated empiri-
cally) has been shown to perform well (57, 58) both in simula-
tions and in practical applications. The available nonparametric 
methods are useful only for sibpair data. Such methods need to 
be developed for pedigree data also.

A summary of choices
VC method is statistically the method of choice for QTL map-
ping, provided that the assumption of multivariate normality of 
trait values within family members is satisfied. This assumption is 
hard to test, and more importantly, if it is violated, then it is hard 
to rectify even by using mathematical transformations of QT val-
ues, e.g., logarithmic or power transformations. Further, in fami-
lies that are selected through a member possessing an extreme 
QT value, there is an even bigger problem of noncompliance with 
the normality assumption. Fortunately, there are indications (49) 
that when this assumption is not met, it is the type I error, rather 
that the type II error, that is inflated to a greater degree. Thus, 
with the VC method, if linkage is detected, then chances are good 
that it is not a false inference.

When the normality assumption is not met, then it may be better 
to use a nonparametric regression method based on sibpair data, 
even though there will be loss of statistical power. In this case, the 
false-positive error rate will be lower. However, no results are yet 
available on the statistical properties of this method when siblings 
are selected based on some inclusion criteria, e.g., siblings belong-
ing to opposite extremes of the trait distribution — discordant sib-
pairs (see, however, Peng and Siegmund; ref. 59).

Unselected samples have low statistical power. Selection of 
discordant sibpairs yields a high statistical power. This prop-
erty is also true of families ascertained through a member with 
an extreme QT value. These selection strategies can be very 
expensive and difficult to implement in practice. A compromise 
solution is to select 1 sibling with an extreme value and choose 
another sibling randomly from among the remaining siblings in 
the sibship. This selection strategy — less expensive and easier to 
implement than selecting discordant sibpairs — has comparable, 
albeit slightly lower, statistical power (14). However, in studies 

Human QTL mapping: key principles
The key principles that underlie all statistical methods for 
QTL mapping are as follows:

(1) Persons sharing similar trait values should share 
alleles at the trait locus at levels higher than those expect-
ed by chance or by virtue of the persons’ biological rela-
tionship. (Conversely, persons who have dissimilar trait 
values should show a decreased level of sharing of alleles 
at the trait locus.)

(2) Because chromosomes are passed on more-or-less 
intact — except for recombinations — from parents to their 
offspring, persons sharing similar trait values should, in 
addition to showing increased sharing of alleles at the trait 
locus, also show increased sharing of alleles at loci around 
the trait locus.

(3) Because recombinations occur in every generation, the 
level of increased sharing of alleles at loci around the trait 
locus decreases in every generation.
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based on sibling pairs in which the focus of interest is on trait-
allele relationships at an individual level rather than on allele-
sharing in families (association analysis), a crucial criterion for 
success of QTL mapping is that the frequencies of marker and 
trait alleles should be in the same ballpark. This means that 
generating polymorphic markers with high frequencies may not 
result in greater success of QTL mapping unless the trait alleles 
have matching frequencies (14). Similar results have also been 
obtained with respect to association study designs that pertain 
to unrelated individuals (not siblings) selected from opposite 
tails of the distribution of QT values (60). This lack of greater 
success in QTL mapping unless the trait alleles have matching 
frequencies is not encouraging. While considerable efforts are 
being made to generate markers that will ease genome-wide 
association mapping of QTLs, if the allele frequencies at the 
QTL are very skewed, efforts in mapping the QTL may be unsuc-
cessful. This is in addition to the fact that a QTL that explains 
less than 10% of the variance of trait values is very hard to map. 
The recent efforts of the HapMap project (16) to provide mark-
ers that may be the most informative for association mapping 
will not be a panacea for overcoming these limitations of human 

QTL mapping. As we have discussed, there is also a great need 
to devise statistical methods for human QTL mapping that do 
not critically depend on model assumptions. In association 
mapping, population stratification (61) is a major issue, and 
therefore, although designs involving unrelated individuals 
are easier to implement, these are best avoided for human QTL 
mapping. Further, the statistical power of QTL mapping using 
association analysis declines very rapidly with the decrease of 
nonrandom association between the QTL and the marker locus 
(62). Notwithstanding the caveats listed above, efforts to map 
human QTLs using a combination of family-based association 
and linkage analysis methods are continuing and should con-
tinue. Successes in practice will crucially depend on refinements 
of statistical methods and developments of novel approaches to 
handle interactions among QTLs as well as the effects of envi-
ronmental factors.
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