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development of gastric cancer, a leading cause of cancer-related deaths worldwide. How the interactions between H.
pylori and its host shape the gastric environment during chronic infection warrants further investigation. In this issue of the
JCI, Palrasu et al. used human cell lines and mouse models to provide mechanistic insight into H. pylori’s ability to delay
apoptosis in gastric epithelial cells by actively driving the degradation of a proapoptotic factor, SIVA1. Their findings
suggest that promoting the survival of gastric epithelial cells has implications not only for H. pylori pathogenesis but for
host tumorigenesis.
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Helicobacter pylori overcomes 
a myriad of host defense 
mechanisms
H. pylori is one of the most prolific human 
pathogens, affecting approximately half 
of the global population (1). The success 
of H. pylori as a chronic pathogen relies 
in large part on its ability to colonize and 
persist within the hostile gastric environ-
ment by overcoming a myriad of host 
defense mechanisms, including peristal-
sis and, most notably, stomach acid. Like 
other chronic pathogens, H. pylori has 
fine-tuned its interactions with its host, 
sufficiently modifying its environment to 
survive, yet tempering activation of the 
host inflammatory response to persist. As 
a result of alterations in host homeostasis, 
H. pylori increases oncogenic risk, with 
H. pylori infection being the single most 
important factor for the development 
of gastric cancer (2). H. pylori–derived 
virulence factors increase cancer risk by 
inducing chronic, recurrent inflamma-
tion while undermining intracellular host 
defense mechanisms and actively driving 

changes in epithelial cell proliferation, 
differentiation, and survival (3, 4).

In this issue of the JCI, Palrasu et al. 
(5) provide detailed, mechanistic evi-
dence to illustrate one method by which 
H. pylori hijacks arguably the most basic, 
innate epithelial defense, apoptosis. The 
authors demonstrated that H. pylori infec-
tion of human gastric epithelial cells led 
to downregulation of the proapoptotic 
factor, SIVA1 (5). SIVA1 promotes CD27- 
and T cell receptor–mediated apoptosis 
and inhibits Bcl-x(L) antiapoptotic activity 
during cellular stress (6–8). Specifically, 
H. pylori infection promoted the proteaso-
mal degradation of SIVA1 by activating a 
ubiquitin ligase and X-linked inhibitor of 
apoptosis, XIAP. Importantly, H. pylori’s 
antiapoptotic effects through SIVA1 are 
mediated by CagA, an H. pylori–specific 
virulence factor that is delivered into host 
cells by a type IV secretion system and 
that influences multiple host intracellu-
lar processes (9). CagA directly regulates 
SIVA1 stability in vitro by stimulating its 
degradation. Accordingly, individuals 

infected with cagA-positive strains of H. 
pylori showed increased XIAP phosphor-
ylation (the activated form of the protein) 
and decreased SIVA1 compared with unin-
fected individuals or those infected with 
cagA-negative strains (5). This article thus 
identifies yet another key function of the 
versatile CagA protein (10), in this case 
promoting H. pylori pathogenesis by sub-
verting established host apoptotic defense 
mechanisms (5).

Apoptosis in the stomach
The Palrasu et al. study (5) forces us to 
reconsider the evolutionary tit-for-tat that 
exists between H. pylori and the human 
stomach. H. pylori colonizes the stomach 
predominantly as an extracellular patho-
gen (11), so what would be the benefit to 
the bacterium in delaying apoptosis and 
promoting the survival of epithelial cells 
in which it does not primarily reside? One 
possibility is that these host epithelial 
cells contribute to a mucinous, extracellu-
lar matrix that provides attachment sites 
for H. pylori as well as shelters the bacteria 
from the highly acidic gastric lumen (12). 
Apoptosis remains an effective means for 
the host to discard these harboring cells 
and limit H. pylori’s epithelial foothold. 
H. pylori, not to be outdone, might have 
developed its own arsenal to specifically 
overcome apoptosis and enhance its col-
onization. In addition to blocking apopto-
sis, a previous study showed that H. pylori 
also relies on CagA to promote and main-
tain a proliferative state that enhances 
colonization (13).

From the host perspective, apoptosis 
in the stomach serves a critical function 
beyond simply restraining bacterial col-
onization. Apoptosis clears injured epi-
thelial cells and limits ongoing cellular 
damage, which may be critical because H. 
pylori infection produces a characteristic 
genotoxicity, with DNA damage at specific  
regions in the host genome, namely in 
transcribed regions and proximal to telo-
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proliferative, metaplastic cells (20). Down-
regulation of chief cell–specific SIVA1, 
therefore, could promote the survival of 
chief cells, representing one method by 
which H. pylori might increase oncogenic 
risk, since long-lived chief cells are prone 
to cyclical reprogramming events that can 
lead to chronic accumulation of DNA dam-
age and an increased potential for neoplas-
tic transformation (17, 20). Moreover, the 
reprogramming of chief cells promotes H. 
pylori’s chronic colonization and expan-
sion throughout the stomach (21).

While this study by Palrasu et al. impli-
cates SIVA1 as a critical component of H. 
pylori pathogenesis and as a key check-
point in the progression to gastric cancer 
following chronic H. pylori infection (5), 
questions remain. Does the degradation 
of SIVA1 mark the evolution toward a pre-
neoplastic state during chronic H. pylori 
infection? Can decreased SIVA1 levels 
portend a poorer prognosis in patients 
chronically infected with H. pylori? What 
is the mutational burden in cells that have 
degraded SIVA1? What is the ultimate fate 
of these cells, and are other host mecha-
nisms in place to trigger apoptosis in the 
face of decreased SIVA1 levels? This study 
prompts a deeper understanding into the 
complex but critical host and microbial 
mechanisms that regulate the mutational 
landscape and underlie the gastric preneo-
plastic milieu.
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meres (14). H. pylori has also been shown to 
inhibit host DNA repair mechanisms (15). 
In addition to DNA damage, persistent 
injury to gastric epithelial cells results in 
repeated rounds of cellular reorganiza-
tion and proliferation, as part of an innate 
and conserved intracellular response to 
repair the gland (16). With each round of 
proliferation, these metaplastic cells can 
accumulate mutations that can predispose 
to the development of cancer. H. pylori 
could directly contribute to this cyclical 
hit model of tumorigenesis (17) by promot-
ing survival of metaplastic cells harboring 
DNA damage or, specifically, mutations in 
key growth or differentiation-regulating 
genes. The authors show that the effect of 
H. pylori on SIVA1 actively limits the host 
response to DNA damage, independently 
of a critical regulator of the DNA damage 
response, p53 (18). Taken together, Palrasu 
et al. (5) lend further support for H. pylori’s 
carcinogenic potential (19) through the 
CagA-mediated downregulation of apop-
totic mechanisms that would otherwise 
weed out mutant cells.

Chronic H. pylori infection 
downregulates SIVA1 
expression
While Palrasu and colleagues primarily 
focused on H. pylori’s effects on SIVA1 in a 
human gastric cancer cell line (5), we note 
that the cell-specific expression of SIVA1 
in vivo could have substantial implications 
for H. pylori pathogenesis and host tum-
origenesis. For example, Siva1 was largely 
absent from the mucus-secreting fove-
olar/pit cells in mice. Broadly speaking, 
delaying apoptosis in this population of 
epithelial cells may confer an advantage to 
H. pylori in the more acute stage of infec-
tion, when H. pylori must gain a foothold 
within the infected gland (13), but it would 
carry little to no carcinogenic risk to the 
host, as these rapidly cycling cells are con-
tinually extruded from the tops of gastric 
glands into the gastric lumen. However, 
Siva1 was highly and almost exclusively 
expressed in chief cells at the bases of gas-
tric glands within the gastric corpus, the 
acid-secreting region of the stomach, and 
was subsequently lost following chronic H. 
pylori infection (5). Injured gastric corpus 
glands can undergo a reorganization, char-
acterized by the reprogramming of chief 
cells at the gland base into a population of 
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